Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redundss3 Structured version   Visualization version   GIF version

Theorem redundss3 38584
Description: Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.)
Hypothesis
Ref Expression
redundss3.1 𝐷𝐶
Assertion
Ref Expression
redundss3 (𝐴 Redund ⟨𝐵, 𝐶⟩ → 𝐴 Redund ⟨𝐵, 𝐷⟩)

Proof of Theorem redundss3
StepHypRef Expression
1 ineq1 4234 . . . 4 ((𝐴𝐶) = (𝐵𝐶) → ((𝐴𝐶) ∩ 𝐷) = ((𝐵𝐶) ∩ 𝐷))
2 redundss3.1 . . . . . . . 8 𝐷𝐶
3 dfss 3995 . . . . . . . 8 (𝐷𝐶𝐷 = (𝐷𝐶))
42, 3mpbi 230 . . . . . . 7 𝐷 = (𝐷𝐶)
5 incom 4230 . . . . . . 7 (𝐷𝐶) = (𝐶𝐷)
64, 5eqtri 2768 . . . . . 6 𝐷 = (𝐶𝐷)
76ineq2i 4238 . . . . 5 (𝐴𝐷) = (𝐴 ∩ (𝐶𝐷))
8 inass 4249 . . . . 5 ((𝐴𝐶) ∩ 𝐷) = (𝐴 ∩ (𝐶𝐷))
97, 8eqtr4i 2771 . . . 4 (𝐴𝐷) = ((𝐴𝐶) ∩ 𝐷)
106ineq2i 4238 . . . . 5 (𝐵𝐷) = (𝐵 ∩ (𝐶𝐷))
11 inass 4249 . . . . 5 ((𝐵𝐶) ∩ 𝐷) = (𝐵 ∩ (𝐶𝐷))
1210, 11eqtr4i 2771 . . . 4 (𝐵𝐷) = ((𝐵𝐶) ∩ 𝐷)
131, 9, 123eqtr4g 2805 . . 3 ((𝐴𝐶) = (𝐵𝐶) → (𝐴𝐷) = (𝐵𝐷))
1413anim2i 616 . 2 ((𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)) → (𝐴𝐵 ∧ (𝐴𝐷) = (𝐵𝐷)))
15 df-redund 38580 . 2 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
16 df-redund 38580 . 2 (𝐴 Redund ⟨𝐵, 𝐷⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐷) = (𝐵𝐷)))
1714, 15, 163imtr4i 292 1 (𝐴 Redund ⟨𝐵, 𝐶⟩ → 𝐴 Redund ⟨𝐵, 𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cin 3975  wss 3976   Redund wredund 38156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-redund 38580
This theorem is referenced by:  refrelsredund2  38589
  Copyright terms: Public domain W3C validator