Proof of Theorem redundss3
| Step | Hyp | Ref
| Expression |
| 1 | | ineq1 4213 |
. . . 4
⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → ((𝐴 ∩ 𝐶) ∩ 𝐷) = ((𝐵 ∩ 𝐶) ∩ 𝐷)) |
| 2 | | redundss3.1 |
. . . . . . . 8
⊢ 𝐷 ⊆ 𝐶 |
| 3 | | dfss 3970 |
. . . . . . . 8
⊢ (𝐷 ⊆ 𝐶 ↔ 𝐷 = (𝐷 ∩ 𝐶)) |
| 4 | 2, 3 | mpbi 230 |
. . . . . . 7
⊢ 𝐷 = (𝐷 ∩ 𝐶) |
| 5 | | incom 4209 |
. . . . . . 7
⊢ (𝐷 ∩ 𝐶) = (𝐶 ∩ 𝐷) |
| 6 | 4, 5 | eqtri 2765 |
. . . . . 6
⊢ 𝐷 = (𝐶 ∩ 𝐷) |
| 7 | 6 | ineq2i 4217 |
. . . . 5
⊢ (𝐴 ∩ 𝐷) = (𝐴 ∩ (𝐶 ∩ 𝐷)) |
| 8 | | inass 4228 |
. . . . 5
⊢ ((𝐴 ∩ 𝐶) ∩ 𝐷) = (𝐴 ∩ (𝐶 ∩ 𝐷)) |
| 9 | 7, 8 | eqtr4i 2768 |
. . . 4
⊢ (𝐴 ∩ 𝐷) = ((𝐴 ∩ 𝐶) ∩ 𝐷) |
| 10 | 6 | ineq2i 4217 |
. . . . 5
⊢ (𝐵 ∩ 𝐷) = (𝐵 ∩ (𝐶 ∩ 𝐷)) |
| 11 | | inass 4228 |
. . . . 5
⊢ ((𝐵 ∩ 𝐶) ∩ 𝐷) = (𝐵 ∩ (𝐶 ∩ 𝐷)) |
| 12 | 10, 11 | eqtr4i 2768 |
. . . 4
⊢ (𝐵 ∩ 𝐷) = ((𝐵 ∩ 𝐶) ∩ 𝐷) |
| 13 | 1, 9, 12 | 3eqtr4g 2802 |
. . 3
⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → (𝐴 ∩ 𝐷) = (𝐵 ∩ 𝐷)) |
| 14 | 13 | anim2i 617 |
. 2
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐷) = (𝐵 ∩ 𝐷))) |
| 15 | | df-redund 38625 |
. 2
⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| 16 | | df-redund 38625 |
. 2
⊢ (𝐴 Redund 〈𝐵, 𝐷〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐷) = (𝐵 ∩ 𝐷))) |
| 17 | 14, 15, 16 | 3imtr4i 292 |
1
⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) |