Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund4 Structured version   Visualization version   GIF version

Theorem refrelsredund4 38675
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38556) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund4 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩

Proof of Theorem refrelsredund4
StepHypRef Expression
1 inxpssres 5633 . . . . 5 ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟)
2 sstr2 3941 . . . . 5 (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟) → (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)
43ssrabi 38291 . . 3 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
5 dfrefrels2 38556 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
64, 5sseqtrri 3984 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels
7 in32 4180 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels )
8 inrab 4266 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
9 dfsymrels2 38588 . . . . . . 7 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
109ineq2i 4167 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
11 refsymrels2 38608 . . . . . 6 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
128, 10, 113eqtr4i 2764 . . . . 5 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ( RefRels ∩ SymRels )
1312ineq1i 4166 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ SymRels ) ∩ RefRels )
14 inass 4178 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels ))
157, 13, 143eqtr3ri 2763 . . 3 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = (( RefRels ∩ SymRels ) ∩ RefRels )
16 in32 4180 . . 3 (( RefRels ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ RefRels ) ∩ SymRels )
17 inass 4178 . . 3 (( RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩ SymRels ))
1815, 16, 173eqtri 2758 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))
19 df-redund 38667 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩ ↔ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels ∧ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))))
206, 18, 19mpbir2an 711 1 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  {crab 3395  cin 3901  wss 3902   I cid 5510   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cres 5618   Rels crels 38223   RefRels crefrels 38226   SymRels csymrels 38232   Redund wredund 38242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-rels 38528  df-ssr 38541  df-refs 38553  df-refrels 38554  df-syms 38585  df-symrels 38586  df-redund 38667
This theorem is referenced by:  refrelsredund2  38676
  Copyright terms: Public domain W3C validator