Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund4 Structured version   Visualization version   GIF version

Theorem refrelsredund4 38630
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38511) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund4 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩

Proof of Theorem refrelsredund4
StepHypRef Expression
1 inxpssres 5658 . . . . 5 ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟)
2 sstr2 3956 . . . . 5 (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟) → (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)
43ssrabi 38246 . . 3 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
5 dfrefrels2 38511 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
64, 5sseqtrri 3999 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels
7 in32 4196 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels )
8 inrab 4282 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
9 dfsymrels2 38543 . . . . . . 7 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
109ineq2i 4183 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
11 refsymrels2 38563 . . . . . 6 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
128, 10, 113eqtr4i 2763 . . . . 5 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ( RefRels ∩ SymRels )
1312ineq1i 4182 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ SymRels ) ∩ RefRels )
14 inass 4194 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels ))
157, 13, 143eqtr3ri 2762 . . 3 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = (( RefRels ∩ SymRels ) ∩ RefRels )
16 in32 4196 . . 3 (( RefRels ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ RefRels ) ∩ SymRels )
17 inass 4194 . . 3 (( RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩ SymRels ))
1815, 16, 173eqtri 2757 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))
19 df-redund 38622 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩ ↔ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels ∧ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))))
206, 18, 19mpbir2an 711 1 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  {crab 3408  cin 3916  wss 3917   I cid 5535   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643   Rels crels 38178   RefRels crefrels 38181   SymRels csymrels 38187   Redund wredund 38197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-rels 38483  df-ssr 38496  df-refs 38508  df-refrels 38509  df-syms 38540  df-symrels 38541  df-redund 38622
This theorem is referenced by:  refrelsredund2  38631
  Copyright terms: Public domain W3C validator