Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund4 Structured version   Visualization version   GIF version

Theorem refrelsredund4 38633
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38514) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund4 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩

Proof of Theorem refrelsredund4
StepHypRef Expression
1 inxpssres 5702 . . . . 5 ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟)
2 sstr2 3990 . . . . 5 (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟) → (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)
43ssrabi 38251 . . 3 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
5 dfrefrels2 38514 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
64, 5sseqtrri 4033 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels
7 in32 4230 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels )
8 inrab 4316 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
9 dfsymrels2 38546 . . . . . . 7 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
109ineq2i 4217 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
11 refsymrels2 38566 . . . . . 6 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
128, 10, 113eqtr4i 2775 . . . . 5 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ( RefRels ∩ SymRels )
1312ineq1i 4216 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ SymRels ) ∩ RefRels )
14 inass 4228 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels ))
157, 13, 143eqtr3ri 2774 . . 3 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = (( RefRels ∩ SymRels ) ∩ RefRels )
16 in32 4230 . . 3 (( RefRels ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ RefRels ) ∩ SymRels )
17 inass 4228 . . 3 (( RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩ SymRels ))
1815, 16, 173eqtri 2769 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))
19 df-redund 38625 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩ ↔ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels ∧ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))))
206, 18, 19mpbir2an 711 1 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  {crab 3436  cin 3950  wss 3951   I cid 5577   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687   Rels crels 38184   RefRels crefrels 38187   SymRels csymrels 38193   Redund wredund 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-rels 38486  df-ssr 38499  df-refs 38511  df-refrels 38512  df-syms 38543  df-symrels 38544  df-redund 38625
This theorem is referenced by:  refrelsredund2  38634
  Copyright terms: Public domain W3C validator