Proof of Theorem refrelsredund4
Step | Hyp | Ref
| Expression |
1 | | inxpssres 5597 |
. . . . 5
⊢ ( I ∩
(dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟) |
2 | | sstr2 3924 |
. . . . 5
⊢ (( I
∩ (dom 𝑟 × ran
𝑟)) ⊆ ( I ↾ dom
𝑟) → (( I ↾ dom
𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (( I
↾ dom 𝑟) ⊆
𝑟 → ( I ∩ (dom
𝑟 × ran 𝑟)) ⊆ 𝑟) |
4 | 3 | ssrabi 36316 |
. . 3
⊢ {𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ⊆ {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
5 | | dfrefrels2 36558 |
. . 3
⊢ RefRels
= {𝑟 ∈ Rels ∣ (
I ∩ (dom 𝑟 × ran
𝑟)) ⊆ 𝑟} |
6 | 4, 5 | sseqtrri 3954 |
. 2
⊢ {𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ⊆
RefRels |
7 | | in32 4152 |
. . . 4
⊢ (({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels
) = (({𝑟 ∈ Rels
∣ ( I ↾ dom 𝑟)
⊆ 𝑟} ∩ RefRels )
∩ SymRels ) |
8 | | inrab 4237 |
. . . . . 6
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
9 | | dfsymrels2 36586 |
. . . . . . 7
⊢ SymRels
= {𝑟 ∈ Rels ∣
◡𝑟 ⊆ 𝑟} |
10 | 9 | ineq2i 4140 |
. . . . . 6
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) |
11 | | refsymrels2 36606 |
. . . . . 6
⊢ ( RefRels
∩ SymRels ) = {𝑟 ∈
Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
12 | 8, 10, 11 | 3eqtr4i 2776 |
. . . . 5
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ( RefRels
∩ SymRels ) |
13 | 12 | ineq1i 4139 |
. . . 4
⊢ (({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels
) = (( RefRels ∩ SymRels ) ∩ RefRels ) |
14 | | inass 4150 |
. . . 4
⊢ (({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels
) = ({𝑟 ∈ Rels ∣
( I ↾ dom 𝑟) ⊆
𝑟} ∩ ( RefRels ∩
SymRels )) |
15 | 7, 13, 14 | 3eqtr3ri 2775 |
. . 3
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels
)) = (( RefRels ∩ SymRels ) ∩ RefRels ) |
16 | | in32 4152 |
. . 3
⊢ ((
RefRels ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ RefRels ) ∩
SymRels ) |
17 | | inass 4150 |
. . 3
⊢ ((
RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩
SymRels )) |
18 | 15, 16, 17 | 3eqtri 2770 |
. 2
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels
)) = ( RefRels ∩ ( RefRels ∩ SymRels )) |
19 | | df-redund 36664 |
. 2
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , (
RefRels ∩ SymRels )〉 ↔ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels ∧ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = (
RefRels ∩ ( RefRels ∩ SymRels )))) |
20 | 6, 18, 19 | mpbir2an 707 |
1
⊢ {𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , (
RefRels ∩ SymRels )〉 |