Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund4 Structured version   Visualization version   GIF version

Theorem refrelsredund4 38623
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38504) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund4 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩

Proof of Theorem refrelsredund4
StepHypRef Expression
1 inxpssres 5655 . . . . 5 ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟)
2 sstr2 3953 . . . . 5 (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟) → (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)
43ssrabi 38239 . . 3 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
5 dfrefrels2 38504 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
64, 5sseqtrri 3996 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels
7 in32 4193 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels )
8 inrab 4279 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
9 dfsymrels2 38536 . . . . . . 7 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
109ineq2i 4180 . . . . . 6 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
11 refsymrels2 38556 . . . . . 6 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
128, 10, 113eqtr4i 2762 . . . . 5 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ( RefRels ∩ SymRels )
1312ineq1i 4179 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ SymRels ) ∩ RefRels )
14 inass 4191 . . . 4 (({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels ))
157, 13, 143eqtr3ri 2761 . . 3 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = (( RefRels ∩ SymRels ) ∩ RefRels )
16 in32 4193 . . 3 (( RefRels ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ RefRels ) ∩ SymRels )
17 inass 4191 . . 3 (( RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩ SymRels ))
1815, 16, 173eqtri 2756 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))
19 df-redund 38615 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩ ↔ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels ∧ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = ( RefRels ∩ ( RefRels ∩ SymRels ))))
206, 18, 19mpbir2an 711 1 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  {crab 3405  cin 3913  wss 3914   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640   Rels crels 38171   RefRels crefrels 38174   SymRels csymrels 38180   Redund wredund 38190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-rels 38476  df-ssr 38489  df-refs 38501  df-refrels 38502  df-syms 38533  df-symrels 38534  df-redund 38615
This theorem is referenced by:  refrelsredund2  38624
  Copyright terms: Public domain W3C validator