Proof of Theorem refrelsredund4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | inxpssres 5702 | . . . . 5
⊢ ( I ∩
(dom 𝑟 × ran 𝑟)) ⊆ ( I ↾ dom 𝑟) | 
| 2 |  | sstr2 3990 | . . . . 5
⊢ (( I
∩ (dom 𝑟 × ran
𝑟)) ⊆ ( I ↾ dom
𝑟) → (( I ↾ dom
𝑟) ⊆ 𝑟 → ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) | 
| 3 | 1, 2 | ax-mp 5 | . . . 4
⊢ (( I
↾ dom 𝑟) ⊆
𝑟 → ( I ∩ (dom
𝑟 × ran 𝑟)) ⊆ 𝑟) | 
| 4 | 3 | ssrabi 38251 | . . 3
⊢ {𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ⊆ {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | 
| 5 |  | dfrefrels2 38514 | . . 3
⊢  RefRels
= {𝑟 ∈ Rels ∣ (
I ∩ (dom 𝑟 × ran
𝑟)) ⊆ 𝑟} | 
| 6 | 4, 5 | sseqtrri 4033 | . 2
⊢ {𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ⊆
RefRels | 
| 7 |  | in32 4230 | . . . 4
⊢ (({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels
) = (({𝑟 ∈ Rels
∣ ( I ↾ dom 𝑟)
⊆ 𝑟} ∩ RefRels )
∩ SymRels ) | 
| 8 |  | inrab 4316 | . . . . . 6
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | 
| 9 |  | dfsymrels2 38546 | . . . . . . 7
⊢  SymRels
= {𝑟 ∈ Rels ∣
◡𝑟 ⊆ 𝑟} | 
| 10 | 9 | ineq2i 4217 | . . . . . 6
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) | 
| 11 |  | refsymrels2 38566 | . . . . . 6
⊢ ( RefRels
∩ SymRels ) = {𝑟 ∈
Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | 
| 12 | 8, 10, 11 | 3eqtr4i 2775 | . . . . 5
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) = ( RefRels
∩ SymRels ) | 
| 13 | 12 | ineq1i 4216 | . . . 4
⊢ (({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ SymRels ) ∩ RefRels
) = (( RefRels ∩ SymRels ) ∩ RefRels ) | 
| 14 |  | inass 4228 | . . . 4
⊢ (({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ RefRels ) ∩ SymRels
) = ({𝑟 ∈ Rels ∣
( I ↾ dom 𝑟) ⊆
𝑟} ∩ ( RefRels ∩
SymRels )) | 
| 15 | 7, 13, 14 | 3eqtr3ri 2774 | . . 3
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels
)) = (( RefRels ∩ SymRels ) ∩ RefRels ) | 
| 16 |  | in32 4230 | . . 3
⊢ ((
RefRels ∩ SymRels ) ∩ RefRels ) = (( RefRels ∩ RefRels ) ∩
SymRels ) | 
| 17 |  | inass 4228 | . . 3
⊢ ((
RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩
SymRels )) | 
| 18 | 15, 16, 17 | 3eqtri 2769 | . 2
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels
)) = ( RefRels ∩ ( RefRels ∩ SymRels )) | 
| 19 |  | df-redund 38625 | . 2
⊢ ({𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , (
RefRels ∩ SymRels )〉 ↔ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ⊆ RefRels ∧ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} ∩ ( RefRels ∩ SymRels )) = (
RefRels ∩ ( RefRels ∩ SymRels )))) | 
| 20 | 6, 18, 19 | mpbir2an 711 | 1
⊢ {𝑟 ∈ Rels ∣ ( I ↾
dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , (
RefRels ∩ SymRels )〉 |