Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brredundsredund Structured version   Visualization version   GIF version

Theorem brredundsredund 38168
Description: For sets, binary relation on the class of all redundant sets (brredunds 38167) is equivalent to satisfying the redundancy predicate (df-redund 38165). (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
brredundsredund ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))

Proof of Theorem brredundsredund
StepHypRef Expression
1 brredunds 38167 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
2 df-redund 38165 . 2 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
31, 2bitr4di 288 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3944  wss 3945  cop 4635   class class class wbr 5148   Redunds credunds 37738   Redund wredund 37739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5683  df-rel 5684  df-cnv 5685  df-oprab 7421  df-redunds 38164  df-redund 38165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator