Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brredundsredund Structured version   Visualization version   GIF version

Theorem brredundsredund 35994
Description: For sets, binary relation on the class of all redundant sets (brredunds 35993) is equivalent to satisfying the redundancy predicate (df-redund 35991). (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
brredundsredund ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))

Proof of Theorem brredundsredund
StepHypRef Expression
1 brredunds 35993 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
2 df-redund 35991 . 2 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
31, 2syl6bbr 292 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  cin 3918  wss 3919  cop 4556   class class class wbr 5053   Redunds credunds 35605   Redund wredund 35606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5054  df-opab 5116  df-xp 5549  df-rel 5550  df-cnv 5551  df-oprab 7155  df-redunds 35990  df-redund 35991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator