Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brredundsredund Structured version   Visualization version   GIF version

Theorem brredundsredund 36902
Description: For sets, binary relation on the class of all redundant sets (brredunds 36901) is equivalent to satisfying the redundancy predicate (df-redund 36899). (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
brredundsredund ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))

Proof of Theorem brredundsredund
StepHypRef Expression
1 brredunds 36901 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
2 df-redund 36899 . 2 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
31, 2bitr4di 288 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ 𝐴 Redund ⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cin 3897  wss 3898  cop 4579   class class class wbr 5092   Redunds credunds 36466   Redund wredund 36467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-rel 5627  df-cnv 5628  df-oprab 7341  df-redunds 36898  df-redund 36899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator