| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brredundsredund | Structured version Visualization version GIF version | ||
| Description: For sets, binary relation on the class of all redundant sets (brredunds 38617) is equivalent to satisfying the redundancy predicate (df-redund 38615). (Contributed by Peter Mazsa, 25-Oct-2022.) |
| Ref | Expression |
|---|---|
| brredundsredund | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brredunds 38617 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | |
| 2 | df-redund 38615 | . 2 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 Redunds credunds 38189 Redund wredund 38190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-oprab 7391 df-redunds 38614 df-redund 38615 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |