| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimrel | ⊢ Rel ⇝𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim 15398 | . 2 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
| 2 | 1 | relopabiv 5764 | 1 ⊢ Rel ⇝𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 dom cdm 5619 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 ↑pm cpm 8757 ℂcc 11011 ℝcr 11012 < clt 11153 ≤ cle 11154 − cmin 11351 ℝ+crp 12892 abscabs 15143 ⇝𝑟 crli 15394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-rlim 15398 |
| This theorem is referenced by: rlim 15404 rlimpm 15409 rlimdm 15460 caucvgrlem2 15584 caucvgr 15585 rlimdmafv 47301 rlimdmafv2 47382 |
| Copyright terms: Public domain | W3C validator |