MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Structured version   Visualization version   GIF version

Theorem rlimrel 15441
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel Rel ⇝𝑟

Proof of Theorem rlimrel
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15437 . 2 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
21relopabiv 5820 1 Rel ⇝𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3061  wrex 3070   class class class wbr 5148  dom cdm 5676  Rel wrel 5681  cfv 6543  (class class class)co 7411  pm cpm 8823  cc 11110  cr 11111   < clt 11252  cle 11253  cmin 11448  +crp 12978  abscabs 15185  𝑟 crli 15433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-opab 5211  df-xp 5682  df-rel 5683  df-rlim 15437
This theorem is referenced by:  rlim  15443  rlimpm  15448  rlimdm  15499  caucvgrlem2  15625  caucvgr  15626  rlimdmafv  46184  rlimdmafv2  46265
  Copyright terms: Public domain W3C validator