MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Structured version   Visualization version   GIF version

Theorem rlimrel 15130
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel Rel ⇝𝑟

Proof of Theorem rlimrel
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15126 . 2 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
21relopabiv 5719 1 Rel ⇝𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  dom cdm 5580  Rel wrel 5585  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801   < clt 10940  cle 10941  cmin 11135  +crp 12659  abscabs 14873  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-xp 5586  df-rel 5587  df-rlim 15126
This theorem is referenced by:  rlim  15132  rlimpm  15137  rlimdm  15188  caucvgrlem2  15314  caucvgr  15315  rlimdmafv  44556  rlimdmafv2  44637
  Copyright terms: Public domain W3C validator