MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Structured version   Visualization version   GIF version

Theorem rlimrel 15512
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel Rel ⇝𝑟

Proof of Theorem rlimrel
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15508 . 2 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
21relopabiv 5810 1 Rel ⇝𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050  wrex 3059   class class class wbr 5123  dom cdm 5665  Rel wrel 5670  cfv 6541  (class class class)co 7413  pm cpm 8849  cc 11135  cr 11136   < clt 11277  cle 11278  cmin 11474  +crp 13016  abscabs 15256  𝑟 crli 15504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-ss 3948  df-opab 5186  df-xp 5671  df-rel 5672  df-rlim 15508
This theorem is referenced by:  rlim  15514  rlimpm  15519  rlimdm  15570  caucvgrlem2  15694  caucvgr  15695  rlimdmafv  47162  rlimdmafv2  47243
  Copyright terms: Public domain W3C validator