| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimrel | ⊢ Rel ⇝𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim 15510 | . 2 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
| 2 | 1 | relopabiv 5804 | 1 ⊢ Rel ⇝𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 dom cdm 5659 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 ↑pm cpm 8846 ℂcc 11132 ℝcr 11133 < clt 11274 ≤ cle 11275 − cmin 11471 ℝ+crp 13013 abscabs 15258 ⇝𝑟 crli 15506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-opab 5187 df-xp 5665 df-rel 5666 df-rlim 15510 |
| This theorem is referenced by: rlim 15516 rlimpm 15521 rlimdm 15572 caucvgrlem2 15696 caucvgr 15697 rlimdmafv 47173 rlimdmafv2 47254 |
| Copyright terms: Public domain | W3C validator |