| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimrel | ⊢ Rel ⇝𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim 15508 | . 2 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
| 2 | 1 | relopabiv 5810 | 1 ⊢ Rel ⇝𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 class class class wbr 5123 dom cdm 5665 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 ↑pm cpm 8849 ℂcc 11135 ℝcr 11136 < clt 11277 ≤ cle 11278 − cmin 11474 ℝ+crp 13016 abscabs 15256 ⇝𝑟 crli 15504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-opab 5186 df-xp 5671 df-rel 5672 df-rlim 15508 |
| This theorem is referenced by: rlim 15514 rlimpm 15519 rlimdm 15570 caucvgrlem2 15694 caucvgr 15695 rlimdmafv 47162 rlimdmafv2 47243 |
| Copyright terms: Public domain | W3C validator |