| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimrel | ⊢ Rel ⇝𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim 15393 | . 2 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel ⇝𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5091 dom cdm 5616 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11001 ℝcr 11002 < clt 11143 ≤ cle 11144 − cmin 11341 ℝ+crp 12887 abscabs 15138 ⇝𝑟 crli 15389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-rlim 15393 |
| This theorem is referenced by: rlim 15399 rlimpm 15404 rlimdm 15455 caucvgrlem2 15579 caucvgr 15580 rlimdmafv 47207 rlimdmafv2 47288 |
| Copyright terms: Public domain | W3C validator |