MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Structured version   Visualization version   GIF version

Theorem rlimrel 15402
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel Rel ⇝𝑟

Proof of Theorem rlimrel
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15398 . 2 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
21relopabiv 5764 1 Rel ⇝𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wral 3048  wrex 3057   class class class wbr 5093  dom cdm 5619  Rel wrel 5624  cfv 6486  (class class class)co 7352  pm cpm 8757  cc 11011  cr 11012   < clt 11153  cle 11154  cmin 11351  +crp 12892  abscabs 15143  𝑟 crli 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-opab 5156  df-xp 5625  df-rel 5626  df-rlim 15398
This theorem is referenced by:  rlim  15404  rlimpm  15409  rlimdm  15460  caucvgrlem2  15584  caucvgr  15585  rlimdmafv  47301  rlimdmafv2  47382
  Copyright terms: Public domain W3C validator