Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
Ref | Expression |
---|---|
rlimrel | ⊢ Rel ⇝𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim 15198 | . 2 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel ⇝𝑟 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 dom cdm 5589 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 ↑pm cpm 8616 ℂcc 10869 ℝcr 10870 < clt 11009 ≤ cle 11010 − cmin 11205 ℝ+crp 12730 abscabs 14945 ⇝𝑟 crli 15194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-rlim 15198 |
This theorem is referenced by: rlim 15204 rlimpm 15209 rlimdm 15260 caucvgrlem2 15386 caucvgr 15387 rlimdmafv 44669 rlimdmafv2 44750 |
Copyright terms: Public domain | W3C validator |