MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrel Structured version   Visualization version   GIF version

Theorem rlimrel 15397
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Assertion
Ref Expression
rlimrel Rel ⇝𝑟

Proof of Theorem rlimrel
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15393 . 2 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
21relopabiv 5760 1 Rel ⇝𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056   class class class wbr 5091  dom cdm 5616  Rel wrel 5621  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11001  cr 11002   < clt 11143  cle 11144  cmin 11341  +crp 12887  abscabs 15138  𝑟 crli 15389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-opab 5154  df-xp 5622  df-rel 5623  df-rlim 15393
This theorem is referenced by:  rlim  15399  rlimpm  15404  rlimdm  15455  caucvgrlem2  15579  caucvgr  15580  rlimdmafv  47207  rlimdmafv2  47288
  Copyright terms: Public domain W3C validator