![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimpm | Structured version Visualization version GIF version |
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimpm | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim 15437 | . . . . 5 ⊢ ⇝𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
2 | opabssxp 5768 | . . . . 5 ⊢ {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ) | |
3 | 1, 2 | eqsstri 4016 | . . . 4 ⊢ ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) |
4 | dmss 5902 | . . . 4 ⊢ ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ) |
6 | dmxpss 6170 | . . 3 ⊢ dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ) | |
7 | 5, 6 | sstri 3991 | . 2 ⊢ dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ) |
8 | rlimrel 15441 | . . 3 ⊢ Rel ⇝𝑟 | |
9 | 8 | releldmi 5947 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
10 | 7, 9 | sselid 3980 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 class class class wbr 5148 {copab 5210 × cxp 5674 dom cdm 5676 ‘cfv 6543 (class class class)co 7411 ↑pm cpm 8823 ℂcc 11110 ℝcr 11111 < clt 11252 ≤ cle 11253 − cmin 11448 ℝ+crp 12978 abscabs 15185 ⇝𝑟 crli 15433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rlim 15437 |
This theorem is referenced by: rlimf 15449 rlimss 15450 rlimclim1 15493 |
Copyright terms: Public domain | W3C validator |