| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimpm | Structured version Visualization version GIF version | ||
| Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimpm | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim 15462 | . . . . 5 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
| 2 | opabssxp 5734 | . . . . 5 ⊢ {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ) | |
| 3 | 1, 2 | eqsstri 3996 | . . . 4 ⊢ ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) |
| 4 | dmss 5869 | . . . 4 ⊢ ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ) |
| 6 | dmxpss 6147 | . . 3 ⊢ dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ) | |
| 7 | 5, 6 | sstri 3959 | . 2 ⊢ dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ) |
| 8 | rlimrel 15466 | . . 3 ⊢ Rel ⇝𝑟 | |
| 9 | 8 | releldmi 5915 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
| 10 | 7, 9 | sselid 3947 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 {copab 5172 × cxp 5639 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 ℝcr 11074 < clt 11215 ≤ cle 11216 − cmin 11412 ℝ+crp 12958 abscabs 15207 ⇝𝑟 crli 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rlim 15462 |
| This theorem is referenced by: rlimf 15474 rlimss 15475 rlimclim1 15518 |
| Copyright terms: Public domain | W3C validator |