| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimpm | Structured version Visualization version GIF version | ||
| Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimpm | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim 15393 | . . . . 5 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
| 2 | opabssxp 5708 | . . . . 5 ⊢ {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ) | |
| 3 | 1, 2 | eqsstri 3981 | . . . 4 ⊢ ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) |
| 4 | dmss 5842 | . . . 4 ⊢ ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ) |
| 6 | dmxpss 6118 | . . 3 ⊢ dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ) | |
| 7 | 5, 6 | sstri 3944 | . 2 ⊢ dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ) |
| 8 | rlimrel 15397 | . . 3 ⊢ Rel ⇝𝑟 | |
| 9 | 8 | releldmi 5888 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
| 10 | 7, 9 | sselid 3932 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 {copab 5153 × cxp 5614 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11001 ℝcr 11002 < clt 11143 ≤ cle 11144 − cmin 11341 ℝ+crp 12887 abscabs 15138 ⇝𝑟 crli 15389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rlim 15393 |
| This theorem is referenced by: rlimf 15405 rlimss 15406 rlimclim1 15449 |
| Copyright terms: Public domain | W3C validator |