MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimpm Structured version   Visualization version   GIF version

Theorem rlimpm 15514
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimpm (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))

Proof of Theorem rlimpm
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15503 . . . . 5 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
2 opabssxp 5747 . . . . 5 {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ)
31, 2eqsstri 4005 . . . 4 𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ)
4 dmss 5882 . . . 4 ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ))
53, 4ax-mp 5 . . 3 dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)
6 dmxpss 6160 . . 3 dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ)
75, 6sstri 3968 . 2 dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ)
8 rlimrel 15507 . . 3 Rel ⇝𝑟
98releldmi 5928 . 2 (𝐹𝑟 𝐴𝐹 ∈ dom ⇝𝑟 )
107, 9sselid 3956 1 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  {copab 5181   × cxp 5652  dom cdm 5654  cfv 6530  (class class class)co 7403  pm cpm 8839  cc 11125  cr 11126   < clt 11267  cle 11268  cmin 11464  +crp 13006  abscabs 15251  𝑟 crli 15499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rlim 15503
This theorem is referenced by:  rlimf  15515  rlimss  15516  rlimclim1  15559
  Copyright terms: Public domain W3C validator