![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimpm | Structured version Visualization version GIF version |
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimpm | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim 15535 | . . . . 5 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
2 | opabssxp 5792 | . . . . 5 ⊢ {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ) | |
3 | 1, 2 | eqsstri 4043 | . . . 4 ⊢ ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) |
4 | dmss 5927 | . . . 4 ⊢ ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ) |
6 | dmxpss 6202 | . . 3 ⊢ dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ) | |
7 | 5, 6 | sstri 4018 | . 2 ⊢ dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ) |
8 | rlimrel 15539 | . . 3 ⊢ Rel ⇝𝑟 | |
9 | 8 | releldmi 5973 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
10 | 7, 9 | sselid 4006 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 {copab 5228 × cxp 5698 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℝcr 11183 < clt 11324 ≤ cle 11325 − cmin 11520 ℝ+crp 13057 abscabs 15283 ⇝𝑟 crli 15531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rlim 15535 |
This theorem is referenced by: rlimf 15547 rlimss 15548 rlimclim1 15591 |
Copyright terms: Public domain | W3C validator |