MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimpm Structured version   Visualization version   GIF version

Theorem rlimpm 15504
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimpm (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))

Proof of Theorem rlimpm
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 15493 . . . . 5 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
2 opabssxp 5776 . . . . 5 {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ)
31, 2eqsstri 4014 . . . 4 𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ)
4 dmss 5911 . . . 4 ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ))
53, 4ax-mp 5 . . 3 dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)
6 dmxpss 6184 . . 3 dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ)
75, 6sstri 3989 . 2 dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ)
8 rlimrel 15497 . . 3 Rel ⇝𝑟
98releldmi 5956 . 2 (𝐹𝑟 𝐴𝐹 ∈ dom ⇝𝑟 )
107, 9sselid 3977 1 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  wral 3051  wrex 3060  wss 3947   class class class wbr 5155  {copab 5217   × cxp 5682  dom cdm 5684  cfv 6556  (class class class)co 7426  pm cpm 8858  cc 11158  cr 11159   < clt 11300  cle 11301  cmin 11496  +crp 13030  abscabs 15241  𝑟 crli 15489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5156  df-opab 5218  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-rlim 15493
This theorem is referenced by:  rlimf  15505  rlimss  15506  rlimclim1  15549
  Copyright terms: Public domain W3C validator