Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimpm | Structured version Visualization version GIF version |
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimpm | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim 15198 | . . . . 5 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
2 | opabssxp 5679 | . . . . 5 ⊢ {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ) | |
3 | 1, 2 | eqsstri 3955 | . . . 4 ⊢ ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) |
4 | dmss 5811 | . . . 4 ⊢ ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ) |
6 | dmxpss 6074 | . . 3 ⊢ dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ) | |
7 | 5, 6 | sstri 3930 | . 2 ⊢ dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ) |
8 | rlimrel 15202 | . . 3 ⊢ Rel ⇝𝑟 | |
9 | 8 | releldmi 5857 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
10 | 7, 9 | sselid 3919 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 {copab 5136 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ↑pm cpm 8616 ℂcc 10869 ℝcr 10870 < clt 11009 ≤ cle 11010 − cmin 11205 ℝ+crp 12730 abscabs 14945 ⇝𝑟 crli 15194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rlim 15198 |
This theorem is referenced by: rlimf 15210 rlimss 15211 rlimclim1 15254 |
Copyright terms: Public domain | W3C validator |