| Step | Hyp | Ref
| Expression |
| 1 | | rlimrel 15514 |
. . . . 5
⊢ Rel
⇝𝑟 |
| 2 | 1 | brrelex2i 5716 |
. . . 4
⊢ (𝐹 ⇝𝑟
𝐶 → 𝐶 ∈ V) |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐹 ⇝𝑟 𝐶 → 𝐶 ∈ V)) |
| 4 | | elex 3485 |
. . . . 5
⊢ (𝐶 ∈ ℂ → 𝐶 ∈ V) |
| 5 | 4 | ad2antrl 728 |
. . . 4
⊢ ((𝐹 ∈ (ℂ
↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V) |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V)) |
| 7 | | rlim.1 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 8 | | rlim.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 9 | | cnex 11215 |
. . . . . 6
⊢ ℂ
∈ V |
| 10 | | reex 11225 |
. . . . . 6
⊢ ℝ
∈ V |
| 11 | | elpm2r 8864 |
. . . . . 6
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 12 | 9, 10, 11 | mpanl12 702 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 13 | 7, 8, 12 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 14 | | eleq1 2823 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 ∈ (ℂ ↑pm ℝ)
↔ 𝐹 ∈ (ℂ
↑pm ℝ))) |
| 15 | | eleq1 2823 |
. . . . . . . . 9
⊢ (𝑤 = 𝐶 → (𝑤 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 16 | 14, 15 | bi2anan9 638 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → ((𝑓 ∈ (ℂ ↑pm ℝ)
∧ 𝑤 ∈ ℂ)
↔ (𝐹 ∈ (ℂ
↑pm ℝ) ∧ 𝐶 ∈ ℂ))) |
| 17 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → 𝑓 = 𝐹) |
| 18 | 17 | dmeqd 5890 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → dom 𝑓 = dom 𝐹) |
| 19 | | fveq1 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) |
| 20 | | oveq12 7419 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑧) = (𝐹‘𝑧) ∧ 𝑤 = 𝐶) → ((𝑓‘𝑧) − 𝑤) = ((𝐹‘𝑧) − 𝐶)) |
| 21 | 19, 20 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → ((𝑓‘𝑧) − 𝑤) = ((𝐹‘𝑧) − 𝐶)) |
| 22 | 21 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → (abs‘((𝑓‘𝑧) − 𝑤)) = (abs‘((𝐹‘𝑧) − 𝐶))) |
| 23 | 22 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → ((abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥 ↔ (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)) |
| 24 | 23 | imbi2d 340 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → ((𝑦 ≤ 𝑧 → (abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) |
| 25 | 18, 24 | raleqbidv 3329 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → (∀𝑧 ∈ dom 𝑓(𝑦 ≤ 𝑧 → (abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) |
| 26 | 25 | rexbidv 3165 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦 ≤ 𝑧 → (abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) |
| 27 | 26 | ralbidv 3164 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦 ≤ 𝑧 → (abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) |
| 28 | 16, 27 | anbi12d 632 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐶) → (((𝑓 ∈ (ℂ ↑pm ℝ)
∧ 𝑤 ∈ ℂ)
∧ ∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦 ≤ 𝑧 → (abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥)) ↔ ((𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝐶 ∈
ℂ) ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| 29 | | df-rlim 15510 |
. . . . . . 7
⊢
⇝𝑟 = {〈𝑓, 𝑤〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ)
∧ 𝑤 ∈ ℂ)
∧ ∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦 ≤ 𝑧 → (abs‘((𝑓‘𝑧) − 𝑤)) < 𝑥))} |
| 30 | 28, 29 | brabga 5514 |
. . . . . 6
⊢ ((𝐹 ∈ (ℂ
↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹 ⇝𝑟 𝐶 ↔ ((𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝐶 ∈
ℂ) ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| 31 | | anass 468 |
. . . . . 6
⊢ (((𝐹 ∈ (ℂ
↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| 32 | 30, 31 | bitrdi 287 |
. . . . 5
⊢ ((𝐹 ∈ (ℂ
↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹 ⇝𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))))) |
| 33 | 32 | ex 412 |
. . . 4
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (𝐶 ∈ V → (𝐹 ⇝𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))))) |
| 34 | 13, 33 | syl 17 |
. . 3
⊢ (𝜑 → (𝐶 ∈ V → (𝐹 ⇝𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))))) |
| 35 | 3, 6, 34 | pm5.21ndd 379 |
. 2
⊢ (𝜑 → (𝐹 ⇝𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))))) |
| 36 | 13 | biantrurd 532 |
. 2
⊢ (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝐶 ∈
ℂ ∧ ∀𝑥
∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))))) |
| 37 | 7 | fdmd 6721 |
. . . . . . 7
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 38 | 37 | raleqdv 3309 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥))) |
| 39 | | rlim.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
| 40 | 39 | fvoveq1d 7432 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (abs‘((𝐹‘𝑧) − 𝐶)) = (abs‘(𝐵 − 𝐶))) |
| 41 | 40 | breq1d 5134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑥)) |
| 42 | 41 | imbi2d 340 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 43 | 42 | ralbidva 3162 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 44 | 38, 43 | bitrd 279 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 45 | 44 | rexbidv 3165 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 46 | 45 | ralbidv 3164 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 47 | 46 | anbi2d 630 |
. 2
⊢ (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)))) |
| 48 | 35, 36, 47 | 3bitr2d 307 |
1
⊢ (𝜑 → (𝐹 ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)))) |