MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim Structured version   Visualization version   GIF version

Theorem rlim 15402
Description: Express the predicate: The limit of complex number function 𝐹 is 𝐶, or 𝐹 converges to 𝐶, in the real sense. This means that for any real 𝑥, no matter how small, there always exists a number 𝑦 such that the absolute difference of any number in the function beyond 𝑦 and the limit is less than 𝑥. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
rlim.1 (𝜑𝐹:𝐴⟶ℂ)
rlim.2 (𝜑𝐴 ⊆ ℝ)
rlim.4 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)
Assertion
Ref Expression
rlim (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
Distinct variable groups:   𝑧,𝐴   𝑥,𝑦,𝑧,𝐶   𝑥,𝐹,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rlim
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimrel 15400 . . . . 5 Rel ⇝𝑟
21brrelex2i 5673 . . . 4 (𝐹𝑟 𝐶𝐶 ∈ V)
32a1i 11 . . 3 (𝜑 → (𝐹𝑟 𝐶𝐶 ∈ V))
4 elex 3457 . . . . 5 (𝐶 ∈ ℂ → 𝐶 ∈ V)
54ad2antrl 728 . . . 4 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V)
65a1i 11 . . 3 (𝜑 → ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V))
7 rlim.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
8 rlim.2 . . . . 5 (𝜑𝐴 ⊆ ℝ)
9 cnex 11087 . . . . . 6 ℂ ∈ V
10 reex 11097 . . . . . 6 ℝ ∈ V
11 elpm2r 8769 . . . . . 6 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
129, 10, 11mpanl12 702 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
137, 8, 12syl2anc 584 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
14 eleq1 2819 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 ∈ (ℂ ↑pm ℝ) ↔ 𝐹 ∈ (ℂ ↑pm ℝ)))
15 eleq1 2819 . . . . . . . . 9 (𝑤 = 𝐶 → (𝑤 ∈ ℂ ↔ 𝐶 ∈ ℂ))
1614, 15bi2anan9 638 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ)))
17 simpl 482 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑤 = 𝐶) → 𝑓 = 𝐹)
1817dmeqd 5845 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑤 = 𝐶) → dom 𝑓 = dom 𝐹)
19 fveq1 6821 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
20 oveq12 7355 . . . . . . . . . . . . . . 15 (((𝑓𝑧) = (𝐹𝑧) ∧ 𝑤 = 𝐶) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐶))
2119, 20sylan 580 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐶))
2221fveq2d 6826 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑤 = 𝐶) → (abs‘((𝑓𝑧) − 𝑤)) = (abs‘((𝐹𝑧) − 𝐶)))
2322breq1d 5101 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑤 = 𝐶) → ((abs‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
2423imbi2d 340 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2518, 24raleqbidv 3312 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝐶) → (∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2625rexbidv 3156 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝐶) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2726ralbidv 3155 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐶) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2816, 27anbi12d 632 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝐶) → (((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥)) ↔ ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
29 df-rlim 15396 . . . . . . 7 𝑟 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥))}
3028, 29brabga 5474 . . . . . 6 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹𝑟 𝐶 ↔ ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
31 anass 468 . . . . . 6 (((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
3230, 31bitrdi 287 . . . . 5 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
3332ex 412 . . . 4 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐶 ∈ V → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))))
3413, 33syl 17 . . 3 (𝜑 → (𝐶 ∈ V → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))))
353, 6, 34pm5.21ndd 379 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
3613biantrurd 532 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
377fdmd 6661 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
3837raleqdv 3292 . . . . . 6 (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
39 rlim.4 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)
4039fvoveq1d 7368 . . . . . . . . 9 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
4140breq1d 5101 . . . . . . . 8 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
4241imbi2d 340 . . . . . . 7 ((𝜑𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4342ralbidva 3153 . . . . . 6 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4438, 43bitrd 279 . . . . 5 (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4544rexbidv 3156 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4645ralbidv 3155 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4746anbi2d 630 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
4835, 36, 473bitr2d 307 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11004  cr 11005   < clt 11146  cle 11147  cmin 11344  +crp 12890  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-pm 8753  df-rlim 15396
This theorem is referenced by:  rlim2  15403  rlimcl  15410  rlimclim  15453  rlimres  15465  caurcvgr  15581
  Copyright terms: Public domain W3C validator