MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim Structured version   Visualization version   GIF version

Theorem rlim 15516
Description: Express the predicate: The limit of complex number function 𝐹 is 𝐶, or 𝐹 converges to 𝐶, in the real sense. This means that for any real 𝑥, no matter how small, there always exists a number 𝑦 such that the absolute difference of any number in the function beyond 𝑦 and the limit is less than 𝑥. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
rlim.1 (𝜑𝐹:𝐴⟶ℂ)
rlim.2 (𝜑𝐴 ⊆ ℝ)
rlim.4 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)
Assertion
Ref Expression
rlim (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
Distinct variable groups:   𝑧,𝐴   𝑥,𝑦,𝑧,𝐶   𝑥,𝐹,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rlim
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimrel 15514 . . . . 5 Rel ⇝𝑟
21brrelex2i 5716 . . . 4 (𝐹𝑟 𝐶𝐶 ∈ V)
32a1i 11 . . 3 (𝜑 → (𝐹𝑟 𝐶𝐶 ∈ V))
4 elex 3485 . . . . 5 (𝐶 ∈ ℂ → 𝐶 ∈ V)
54ad2antrl 728 . . . 4 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V)
65a1i 11 . . 3 (𝜑 → ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V))
7 rlim.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
8 rlim.2 . . . . 5 (𝜑𝐴 ⊆ ℝ)
9 cnex 11215 . . . . . 6 ℂ ∈ V
10 reex 11225 . . . . . 6 ℝ ∈ V
11 elpm2r 8864 . . . . . 6 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
129, 10, 11mpanl12 702 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
137, 8, 12syl2anc 584 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
14 eleq1 2823 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 ∈ (ℂ ↑pm ℝ) ↔ 𝐹 ∈ (ℂ ↑pm ℝ)))
15 eleq1 2823 . . . . . . . . 9 (𝑤 = 𝐶 → (𝑤 ∈ ℂ ↔ 𝐶 ∈ ℂ))
1614, 15bi2anan9 638 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ)))
17 simpl 482 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑤 = 𝐶) → 𝑓 = 𝐹)
1817dmeqd 5890 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑤 = 𝐶) → dom 𝑓 = dom 𝐹)
19 fveq1 6880 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
20 oveq12 7419 . . . . . . . . . . . . . . 15 (((𝑓𝑧) = (𝐹𝑧) ∧ 𝑤 = 𝐶) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐶))
2119, 20sylan 580 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐶))
2221fveq2d 6885 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑤 = 𝐶) → (abs‘((𝑓𝑧) − 𝑤)) = (abs‘((𝐹𝑧) − 𝐶)))
2322breq1d 5134 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑤 = 𝐶) → ((abs‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
2423imbi2d 340 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2518, 24raleqbidv 3329 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝐶) → (∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2625rexbidv 3165 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝐶) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2726ralbidv 3164 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐶) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2816, 27anbi12d 632 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝐶) → (((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥)) ↔ ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
29 df-rlim 15510 . . . . . . 7 𝑟 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥))}
3028, 29brabga 5514 . . . . . 6 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹𝑟 𝐶 ↔ ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
31 anass 468 . . . . . 6 (((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
3230, 31bitrdi 287 . . . . 5 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
3332ex 412 . . . 4 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐶 ∈ V → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))))
3413, 33syl 17 . . 3 (𝜑 → (𝐶 ∈ V → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))))
353, 6, 34pm5.21ndd 379 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
3613biantrurd 532 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
377fdmd 6721 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
3837raleqdv 3309 . . . . . 6 (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
39 rlim.4 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)
4039fvoveq1d 7432 . . . . . . . . 9 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
4140breq1d 5134 . . . . . . . 8 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
4241imbi2d 340 . . . . . . 7 ((𝜑𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4342ralbidva 3162 . . . . . 6 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4438, 43bitrd 279 . . . . 5 (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4544rexbidv 3165 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4645ralbidv 3164 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4746anbi2d 630 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
4835, 36, 473bitr2d 307 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931   class class class wbr 5124  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  pm cpm 8846  cc 11132  cr 11133   < clt 11274  cle 11275  cmin 11471  +crp 13013  abscabs 15258  𝑟 crli 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-pm 8848  df-rlim 15510
This theorem is referenced by:  rlim2  15517  rlimcl  15524  rlimclim  15567  rlimres  15579  caurcvgr  15695
  Copyright terms: Public domain W3C validator