MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s1 Structured version   Visualization version   GIF version

Definition df-s1 14506
Description: Define the canonical injection from symbols to words. Although not required, 𝐴 should usually be a set. Otherwise, the singleton word ⟨“𝐴”⟩ would be the singleton word consisting of the empty set, see s1prc 14514, and not, as maybe expected, the empty word, see also s1nz 14517. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s1 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}

Detailed syntax breakdown of Definition df-s1
StepHypRef Expression
1 cA . . 3 class 𝐴
21cs1 14505 . 2 class ⟨“𝐴”⟩
3 cc0 11013 . . . 4 class 0
4 cid 5513 . . . . 5 class I
51, 4cfv 6486 . . . 4 class ( I ‘𝐴)
63, 5cop 4581 . . 3 class ⟨0, ( I ‘𝐴)⟩
76csn 4575 . 2 class {⟨0, ( I ‘𝐴)⟩}
82, 7wceq 1541 1 wff ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
Colors of variables: wff setvar class
This definition is referenced by:  ids1  14507  s1val  14508  s1eq  14510  s1len  14516  s1nz  14517  funcnvs1  14821
  Copyright terms: Public domain W3C validator