MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s1 Structured version   Visualization version   GIF version

Definition df-s1 14310
Description: Define the canonical injection from symbols to words. Although not required, 𝐴 should usually be a set. Otherwise, the singleton word ⟨“𝐴”⟩ would be the singleton word consisting of the empty set, see s1prc 14318, and not, as maybe expected, the empty word, see also s1nz 14321. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s1 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}

Detailed syntax breakdown of Definition df-s1
StepHypRef Expression
1 cA . . 3 class 𝐴
21cs1 14309 . 2 class ⟨“𝐴”⟩
3 cc0 10880 . . . 4 class 0
4 cid 5489 . . . . 5 class I
51, 4cfv 6437 . . . 4 class ( I ‘𝐴)
63, 5cop 4568 . . 3 class ⟨0, ( I ‘𝐴)⟩
76csn 4562 . 2 class {⟨0, ( I ‘𝐴)⟩}
82, 7wceq 1539 1 wff ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
Colors of variables: wff setvar class
This definition is referenced by:  ids1  14311  s1val  14312  s1eq  14314  s1len  14320  s1nz  14321  funcnvs1  14634
  Copyright terms: Public domain W3C validator