MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s1 Structured version   Visualization version   GIF version

Definition df-s1 14501
Description: Define the canonical injection from symbols to words. Although not required, 𝐴 should usually be a set. Otherwise, the singleton word ⟨“𝐴”⟩ would be the singleton word consisting of the empty set, see s1prc 14509, and not, as maybe expected, the empty word, see also s1nz 14512. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s1 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}

Detailed syntax breakdown of Definition df-s1
StepHypRef Expression
1 cA . . 3 class 𝐴
21cs1 14500 . 2 class ⟨“𝐴”⟩
3 cc0 11003 . . . 4 class 0
4 cid 5510 . . . . 5 class I
51, 4cfv 6481 . . . 4 class ( I ‘𝐴)
63, 5cop 4582 . . 3 class ⟨0, ( I ‘𝐴)⟩
76csn 4576 . 2 class {⟨0, ( I ‘𝐴)⟩}
82, 7wceq 1541 1 wff ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
Colors of variables: wff setvar class
This definition is referenced by:  ids1  14502  s1val  14503  s1eq  14505  s1len  14511  s1nz  14512  funcnvs1  14816
  Copyright terms: Public domain W3C validator