| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version | ||
| Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14601 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | 1 | fveq2i 6875 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
| 3 | opex 5436 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 4 | hashsng 14375 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
| 6 | 2, 5 | eqtri 2757 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 〈cop 4605 I cid 5544 ‘cfv 6527 0cc0 11121 1c1 11122 ♯chash 14336 〈“cs1 14600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-hash 14337 df-s1 14601 |
| This theorem is referenced by: s1dm 14613 lsws1 14616 eqs1 14617 wrdl1s1 14619 ccats1alpha 14624 ccatws1len 14625 ccat2s1len 14628 ccats1val2 14632 ccat2s1p1 14634 ccat2s1p2 14635 cats1un 14726 revs1 14770 cats1fvn 14864 cats1len 14866 s2fv0 14893 s2fv1 14894 s2len 14895 s2prop 14913 s2eq2s1eq 14942 ofs2 14977 psgnpmtr 19476 efgsval2 19699 efgs1 19701 efgsp1 19703 efgsfo 19705 efgredlemc 19711 pgpfaclem1 20049 wwlksnext 29807 wwlksnextbi 29808 clwlkclwwlk2 29916 loopclwwlkn1b 29955 clwwlkn1loopb 29956 clwwlkel 29959 clwwlkwwlksb 29967 clwwlknon1 30010 1ewlk 30028 1pthdlem1 30048 1pthdlem2 30049 1wlkdlem1 30050 1wlkdlem4 30053 1pthond 30057 lp1cycl 30065 ccatws1f1o 32846 cycpmco2lem2 33056 cycpmco2lem5 33059 cycpmco2lem6 33060 1arithidomlem2 33469 signstf0 34521 signstfvn 34522 signstfvp 34524 signsvf1 34534 signsvfn 34535 signshf 34541 loop1cycl 35080 upwordsing 46843 |
| Copyright terms: Public domain | W3C validator |