| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version | ||
| Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14501 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
| 3 | opex 5404 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 4 | hashsng 14273 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
| 6 | 2, 5 | eqtri 2754 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 I cid 5510 ‘cfv 6481 0cc0 11003 1c1 11004 ♯chash 14234 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 df-s1 14501 |
| This theorem is referenced by: s1dm 14513 lsws1 14516 eqs1 14517 wrdl1s1 14519 ccats1alpha 14524 ccatws1len 14525 ccat2s1len 14528 ccats1val2 14532 ccat2s1p1 14534 ccat2s1p2 14535 cats1un 14625 revs1 14669 cats1fvn 14762 cats1len 14764 s2fv0 14791 s2fv1 14792 s2len 14793 s2prop 14811 s2eq2s1eq 14840 ofs2 14875 psgnpmtr 19420 efgsval2 19643 efgs1 19645 efgsp1 19647 efgsfo 19649 efgredlemc 19655 pgpfaclem1 19993 wwlksnext 29869 wwlksnextbi 29870 clwlkclwwlk2 29978 loopclwwlkn1b 30017 clwwlkn1loopb 30018 clwwlkel 30021 clwwlkwwlksb 30029 clwwlknon1 30072 1ewlk 30090 1pthdlem1 30110 1pthdlem2 30111 1wlkdlem1 30112 1wlkdlem4 30115 1pthond 30119 lp1cycl 30127 ccatws1f1o 32927 cycpmco2lem2 33091 cycpmco2lem5 33094 cycpmco2lem6 33095 1arithidomlem2 33496 signstf0 34576 signstfvn 34577 signstfvp 34579 signsvf1 34589 signsvfn 34590 signshf 34596 loop1cycl 35169 |
| Copyright terms: Public domain | W3C validator |