| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version | ||
| Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14614 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | 1 | fveq2i 6879 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
| 3 | opex 5439 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 4 | hashsng 14387 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
| 6 | 2, 5 | eqtri 2758 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 I cid 5547 ‘cfv 6531 0cc0 11129 1c1 11130 ♯chash 14348 〈“cs1 14613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-s1 14614 |
| This theorem is referenced by: s1dm 14626 lsws1 14629 eqs1 14630 wrdl1s1 14632 ccats1alpha 14637 ccatws1len 14638 ccat2s1len 14641 ccats1val2 14645 ccat2s1p1 14647 ccat2s1p2 14648 cats1un 14739 revs1 14783 cats1fvn 14877 cats1len 14879 s2fv0 14906 s2fv1 14907 s2len 14908 s2prop 14926 s2eq2s1eq 14955 ofs2 14990 psgnpmtr 19491 efgsval2 19714 efgs1 19716 efgsp1 19718 efgsfo 19720 efgredlemc 19726 pgpfaclem1 20064 wwlksnext 29875 wwlksnextbi 29876 clwlkclwwlk2 29984 loopclwwlkn1b 30023 clwwlkn1loopb 30024 clwwlkel 30027 clwwlkwwlksb 30035 clwwlknon1 30078 1ewlk 30096 1pthdlem1 30116 1pthdlem2 30117 1wlkdlem1 30118 1wlkdlem4 30121 1pthond 30125 lp1cycl 30133 ccatws1f1o 32927 cycpmco2lem2 33138 cycpmco2lem5 33141 cycpmco2lem6 33142 1arithidomlem2 33551 signstf0 34600 signstfvn 34601 signstfvp 34603 signsvf1 34613 signsvfn 34614 signshf 34620 loop1cycl 35159 upwordsing 46913 |
| Copyright terms: Public domain | W3C validator |