Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version |
Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14229 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | 1 | fveq2i 6759 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
3 | opex 5373 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
4 | hashsng 14012 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
6 | 2, 5 | eqtri 2766 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 I cid 5479 ‘cfv 6418 0cc0 10802 1c1 10803 ♯chash 13972 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-s1 14229 |
This theorem is referenced by: s1dm 14241 lsws1 14244 eqs1 14245 wrdl1s1 14247 ccats1alpha 14252 ccatws1len 14253 ccat2s1len 14256 ccat2s1lenOLD 14257 ccats1val2 14262 ccat2s1p1 14264 ccat2s1p2 14265 ccat2s1p1OLD 14266 ccat2s1p2OLD 14267 cats1un 14362 revs1 14406 cats1fvn 14499 cats1len 14501 s2fv0 14528 s2fv1 14529 s2len 14530 s2prop 14548 s2eq2s1eq 14577 ofs2 14610 psgnpmtr 19033 efgsval2 19254 efgs1 19256 efgsp1 19258 efgsfo 19260 efgredlemc 19266 pgpfaclem1 19599 wlklenvclwlkOLD 27925 wwlksnext 28159 wwlksnextbi 28160 clwlkclwwlk2 28268 loopclwwlkn1b 28307 clwwlkn1loopb 28308 clwwlkel 28311 clwwlkwwlksb 28319 clwwlknon1 28362 1ewlk 28380 1pthdlem1 28400 1pthdlem2 28401 1wlkdlem1 28402 1wlkdlem4 28405 1pthond 28409 lp1cycl 28417 cycpmco2lem2 31296 cycpmco2lem5 31299 cycpmco2lem6 31300 signstf0 32447 signstfvn 32448 signstfvp 32450 signsvf1 32460 signsvfn 32461 signshf 32467 loop1cycl 32999 |
Copyright terms: Public domain | W3C validator |