| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version | ||
| Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14568 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | 1 | fveq2i 6864 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
| 3 | opex 5427 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 4 | hashsng 14341 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
| 6 | 2, 5 | eqtri 2753 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 I cid 5535 ‘cfv 6514 0cc0 11075 1c1 11076 ♯chash 14302 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-s1 14568 |
| This theorem is referenced by: s1dm 14580 lsws1 14583 eqs1 14584 wrdl1s1 14586 ccats1alpha 14591 ccatws1len 14592 ccat2s1len 14595 ccats1val2 14599 ccat2s1p1 14601 ccat2s1p2 14602 cats1un 14693 revs1 14737 cats1fvn 14831 cats1len 14833 s2fv0 14860 s2fv1 14861 s2len 14862 s2prop 14880 s2eq2s1eq 14909 ofs2 14944 psgnpmtr 19447 efgsval2 19670 efgs1 19672 efgsp1 19674 efgsfo 19676 efgredlemc 19682 pgpfaclem1 20020 wwlksnext 29830 wwlksnextbi 29831 clwlkclwwlk2 29939 loopclwwlkn1b 29978 clwwlkn1loopb 29979 clwwlkel 29982 clwwlkwwlksb 29990 clwwlknon1 30033 1ewlk 30051 1pthdlem1 30071 1pthdlem2 30072 1wlkdlem1 30073 1wlkdlem4 30076 1pthond 30080 lp1cycl 30088 ccatws1f1o 32880 cycpmco2lem2 33091 cycpmco2lem5 33094 cycpmco2lem6 33095 1arithidomlem2 33514 signstf0 34566 signstfvn 34567 signstfvp 34569 signsvf1 34579 signsvfn 34580 signshf 34586 loop1cycl 35131 upwordsing 46889 |
| Copyright terms: Public domain | W3C validator |