MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1len Structured version   Visualization version   GIF version

Theorem s1len 13667
Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1len (♯‘⟨“𝐴”⟩) = 1

Proof of Theorem s1len
StepHypRef Expression
1 df-s1 13657 . . 3 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
21fveq2i 6437 . 2 (♯‘⟨“𝐴”⟩) = (♯‘{⟨0, ( I ‘𝐴)⟩})
3 opex 5154 . . 3 ⟨0, ( I ‘𝐴)⟩ ∈ V
4 hashsng 13450 . . 3 (⟨0, ( I ‘𝐴)⟩ ∈ V → (♯‘{⟨0, ( I ‘𝐴)⟩}) = 1)
53, 4ax-mp 5 . 2 (♯‘{⟨0, ( I ‘𝐴)⟩}) = 1
62, 5eqtri 2850 1 (♯‘⟨“𝐴”⟩) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  Vcvv 3415  {csn 4398  cop 4404   I cid 5250  cfv 6124  0cc0 10253  1c1 10254  chash 13411  ⟨“cs1 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-hash 13412  df-s1 13657
This theorem is referenced by:  s1dm  13669  lsws1  13672  eqs1  13673  wrdl1s1  13675  ccats1alpha  13680  ccatws1len  13681  ccat2s1len  13684  ccats1val2  13688  ccat2s1p1  13690  ccat2s1p2  13691  cats1un  13812  revs1  13882  cats1fvn  13980  cats1len  13982  s2fv0  14009  s2fv1  14010  s2len  14011  s2prop  14029  s2eq2s1eq  14058  ofs2  14090  psgnpmtr  18282  efgsval2  18498  efgs1  18500  efgsp1  18502  efgsfo  18505  efgredlemc  18511  pgpfaclem1  18835  wlklenvclwlk  26953  wwlksnext  27205  wwlksnextbi  27206  wwlksnextbiOLD  27207  clwlkclwwlk2  27334  clwlkclwwlk2OLD  27335  loopclwwlkn1b  27388  clwwlkn1loopb  27389  clwwlkel  27392  clwwlkwwlksb  27407  clwwlknon1  27472  1ewlk  27492  1pthdlem1  27512  1pthdlem2  27513  1wlkdlem1  27514  1wlkdlem4  27517  1pthond  27521  lp1cycl  27529  signstf0  31193  signstfvn  31194  signstfvp  31197  signsvf1  31208  signsvfn  31209  signshf  31215
  Copyright terms: Public domain W3C validator