![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version |
Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1len | ⊢ (♯‘⟨“𝐴”⟩) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14550 | . . 3 ⊢ ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩} | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (♯‘⟨“𝐴”⟩) = (♯‘{⟨0, ( I ‘𝐴)⟩}) |
3 | opex 5464 | . . 3 ⊢ ⟨0, ( I ‘𝐴)⟩ ∈ V | |
4 | hashsng 14333 | . . 3 ⊢ (⟨0, ( I ‘𝐴)⟩ ∈ V → (♯‘{⟨0, ( I ‘𝐴)⟩}) = 1) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{⟨0, ( I ‘𝐴)⟩}) = 1 |
6 | 2, 5 | eqtri 2760 | 1 ⊢ (♯‘⟨“𝐴”⟩) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 I cid 5573 ‘cfv 6543 0cc0 11112 1c1 11113 ♯chash 14294 ⟨“cs1 14549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-hash 14295 df-s1 14550 |
This theorem is referenced by: s1dm 14562 lsws1 14565 eqs1 14566 wrdl1s1 14568 ccats1alpha 14573 ccatws1len 14574 ccat2s1len 14577 ccats1val2 14581 ccat2s1p1 14583 ccat2s1p2 14584 cats1un 14675 revs1 14719 cats1fvn 14813 cats1len 14815 s2fv0 14842 s2fv1 14843 s2len 14844 s2prop 14862 s2eq2s1eq 14891 ofs2 14922 psgnpmtr 19419 efgsval2 19642 efgs1 19644 efgsp1 19646 efgsfo 19648 efgredlemc 19654 pgpfaclem1 19992 wwlksnext 29402 wwlksnextbi 29403 clwlkclwwlk2 29511 loopclwwlkn1b 29550 clwwlkn1loopb 29551 clwwlkel 29554 clwwlkwwlksb 29562 clwwlknon1 29605 1ewlk 29623 1pthdlem1 29643 1pthdlem2 29644 1wlkdlem1 29645 1wlkdlem4 29648 1pthond 29652 lp1cycl 29660 cycpmco2lem2 32544 cycpmco2lem5 32547 cycpmco2lem6 32548 signstf0 33865 signstfvn 33866 signstfvp 33868 signsvf1 33878 signsvfn 33879 signshf 33885 loop1cycl 34414 upwordsing 45897 |
Copyright terms: Public domain | W3C validator |