Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version |
Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14392 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | 1 | fveq2i 6822 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
3 | opex 5403 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
4 | hashsng 14176 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
6 | 2, 5 | eqtri 2764 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4572 〈cop 4578 I cid 5511 ‘cfv 6473 0cc0 10964 1c1 10965 ♯chash 14137 〈“cs1 14391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-hash 14138 df-s1 14392 |
This theorem is referenced by: s1dm 14404 lsws1 14407 eqs1 14408 wrdl1s1 14410 ccats1alpha 14415 ccatws1len 14416 ccat2s1len 14419 ccats1val2 14424 ccat2s1p1 14426 ccat2s1p2 14427 ccat2s1p1OLD 14428 ccat2s1p2OLD 14429 cats1un 14524 revs1 14568 cats1fvn 14662 cats1len 14664 s2fv0 14691 s2fv1 14692 s2len 14693 s2prop 14711 s2eq2s1eq 14740 ofs2 14773 psgnpmtr 19206 efgsval2 19426 efgs1 19428 efgsp1 19430 efgsfo 19432 efgredlemc 19438 pgpfaclem1 19771 wwlksnext 28487 wwlksnextbi 28488 clwlkclwwlk2 28596 loopclwwlkn1b 28635 clwwlkn1loopb 28636 clwwlkel 28639 clwwlkwwlksb 28647 clwwlknon1 28690 1ewlk 28708 1pthdlem1 28728 1pthdlem2 28729 1wlkdlem1 28730 1wlkdlem4 28733 1pthond 28737 lp1cycl 28745 cycpmco2lem2 31622 cycpmco2lem5 31625 cycpmco2lem6 31626 signstf0 32788 signstfvn 32789 signstfvp 32791 signsvf1 32801 signsvfn 32802 signshf 32808 loop1cycl 33339 upwordsing 46859 |
Copyright terms: Public domain | W3C validator |