| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1len | Structured version Visualization version GIF version | ||
| Description: Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1len | ⊢ (♯‘〈“𝐴”〉) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14521 | . . 3 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | 1 | fveq2i 6829 | . 2 ⊢ (♯‘〈“𝐴”〉) = (♯‘{〈0, ( I ‘𝐴)〉}) |
| 3 | opex 5411 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 4 | hashsng 14294 | . . 3 ⊢ (〈0, ( I ‘𝐴)〉 ∈ V → (♯‘{〈0, ( I ‘𝐴)〉}) = 1) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (♯‘{〈0, ( I ‘𝐴)〉}) = 1 |
| 6 | 2, 5 | eqtri 2752 | 1 ⊢ (♯‘〈“𝐴”〉) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 I cid 5517 ‘cfv 6486 0cc0 11028 1c1 11029 ♯chash 14255 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-s1 14521 |
| This theorem is referenced by: s1dm 14533 lsws1 14536 eqs1 14537 wrdl1s1 14539 ccats1alpha 14544 ccatws1len 14545 ccat2s1len 14548 ccats1val2 14552 ccat2s1p1 14554 ccat2s1p2 14555 cats1un 14645 revs1 14689 cats1fvn 14783 cats1len 14785 s2fv0 14812 s2fv1 14813 s2len 14814 s2prop 14832 s2eq2s1eq 14861 ofs2 14896 psgnpmtr 19407 efgsval2 19630 efgs1 19632 efgsp1 19634 efgsfo 19636 efgredlemc 19642 pgpfaclem1 19980 wwlksnext 29856 wwlksnextbi 29857 clwlkclwwlk2 29965 loopclwwlkn1b 30004 clwwlkn1loopb 30005 clwwlkel 30008 clwwlkwwlksb 30016 clwwlknon1 30059 1ewlk 30077 1pthdlem1 30097 1pthdlem2 30098 1wlkdlem1 30099 1wlkdlem4 30102 1pthond 30106 lp1cycl 30114 ccatws1f1o 32906 cycpmco2lem2 33082 cycpmco2lem5 33085 cycpmco2lem6 33086 1arithidomlem2 33483 signstf0 34535 signstfvn 34536 signstfvp 34538 signsvf1 34548 signsvfn 34549 signshf 34555 loop1cycl 35109 upwordsing 46866 |
| Copyright terms: Public domain | W3C validator |