| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1prc | Structured version Visualization version GIF version | ||
| Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| s1prc | ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ids1 14562 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
| 2 | fvprc 6850 | . . 3 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
| 3 | 2 | s1eqd 14566 | . 2 ⊢ (¬ 𝐴 ∈ V → 〈“( I ‘𝐴)”〉 = 〈“∅”〉) |
| 4 | 1, 3 | eqtrid 2776 | 1 ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 I cid 5532 ‘cfv 6511 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-s1 14561 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |