| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1prc | Structured version Visualization version GIF version | ||
| Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| s1prc | ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ids1 14635 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
| 2 | fvprc 6898 | . . 3 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
| 3 | 2 | s1eqd 14639 | . 2 ⊢ (¬ 𝐴 ∈ V → 〈“( I ‘𝐴)”〉 = 〈“∅”〉) |
| 4 | 1, 3 | eqtrid 2789 | 1 ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 I cid 5577 ‘cfv 6561 〈“cs1 14633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-s1 14634 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |