MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1prc Structured version   Visualization version   GIF version

Theorem s1prc 14237
Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
s1prc 𝐴 ∈ V → ⟨“𝐴”⟩ = ⟨“∅”⟩)

Proof of Theorem s1prc
StepHypRef Expression
1 ids1 14230 . 2 ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩
2 fvprc 6748 . . 3 𝐴 ∈ V → ( I ‘𝐴) = ∅)
32s1eqd 14234 . 2 𝐴 ∈ V → ⟨“( I ‘𝐴)”⟩ = ⟨“∅”⟩)
41, 3eqtrid 2790 1 𝐴 ∈ V → ⟨“𝐴”⟩ = ⟨“∅”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253   I cid 5479  cfv 6418  ⟨“cs1 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-s1 14229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator