![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1prc | Structured version Visualization version GIF version |
Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.) |
Ref | Expression |
---|---|
s1prc | ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ids1 13759 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
2 | fvprc 6490 | . . 3 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
3 | 2 | s1eqd 13763 | . 2 ⊢ (¬ 𝐴 ∈ V → 〈“( I ‘𝐴)”〉 = 〈“∅”〉) |
4 | 1, 3 | syl5eq 2821 | 1 ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1508 ∈ wcel 2051 Vcvv 3410 ∅c0 4173 I cid 5308 ‘cfv 6186 〈“cs1 13757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-iota 6150 df-fun 6188 df-fv 6194 df-s1 13758 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |