| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1val | Structured version Visualization version GIF version | ||
| Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1val | ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14561 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | fvi 6937 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) | |
| 3 | 2 | opeq2d 4844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈0, ( I ‘𝐴)〉 = 〈0, 𝐴〉) |
| 4 | 3 | sneqd 4601 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈0, ( I ‘𝐴)〉} = {〈0, 𝐴〉}) |
| 5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 I cid 5532 ‘cfv 6511 0cc0 11068 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-s1 14561 |
| This theorem is referenced by: s1rn 14564 s1cl 14567 s1dmALT 14574 s1fv 14575 s111 14580 repsw1 14748 s1co 14799 s2prop 14873 ofs1 14936 gsumws1 18765 uspgr1ewop 29175 usgr2v1e2w 29179 0wlkons1 30050 s1f1 32864 cshw1s2 32882 ofcs1 34535 signstf0 34559 |
| Copyright terms: Public domain | W3C validator |