MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1val Structured version   Visualization version   GIF version

Theorem s1val 14636
Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1val (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})

Proof of Theorem s1val
StepHypRef Expression
1 df-s1 14634 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 fvi 6985 . . . 4 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
32opeq2d 4880 . . 3 (𝐴𝑉 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, 𝐴⟩)
43sneqd 4638 . 2 (𝐴𝑉 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, 𝐴⟩})
51, 4eqtrid 2789 1 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4626  cop 4632   I cid 5577  cfv 6561  0cc0 11155  ⟨“cs1 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-s1 14634
This theorem is referenced by:  s1rn  14637  s1cl  14640  s1dmALT  14647  s1fv  14648  s111  14653  repsw1  14821  s1co  14872  s2prop  14946  ofs1  15009  gsumws1  18851  uspgr1ewop  29265  usgr2v1e2w  29269  0wlkons1  30140  s1f1  32927  cshw1s2  32945  ofcs1  34559  signstf0  34583
  Copyright terms: Public domain W3C validator