Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1val | Structured version Visualization version GIF version |
Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1val | ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14299 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | fvi 6841 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) | |
3 | 2 | opeq2d 4817 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈0, ( I ‘𝐴)〉 = 〈0, 𝐴〉) |
4 | 3 | sneqd 4579 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈0, ( I ‘𝐴)〉} = {〈0, 𝐴〉}) |
5 | 1, 4 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {csn 4567 〈cop 4573 I cid 5489 ‘cfv 6432 0cc0 10872 〈“cs1 14298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-s1 14299 |
This theorem is referenced by: s1rn 14302 s1cl 14305 s1dmALT 14312 s1fv 14313 s111 14318 repsw1 14494 s1co 14544 s2prop 14618 ofs1 14679 gsumws1 18474 uspgr1ewop 27613 usgr2v1e2w 27617 0wlkons1 28481 s1f1 31213 cshw1s2 31228 ofcs1 32519 signstf0 32543 |
Copyright terms: Public domain | W3C validator |