Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1val | Structured version Visualization version GIF version |
Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1val | ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14229 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | fvi 6826 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) | |
3 | 2 | opeq2d 4808 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈0, ( I ‘𝐴)〉 = 〈0, 𝐴〉) |
4 | 3 | sneqd 4570 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈0, ( I ‘𝐴)〉} = {〈0, 𝐴〉}) |
5 | 1, 4 | eqtrid 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 I cid 5479 ‘cfv 6418 0cc0 10802 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-s1 14229 |
This theorem is referenced by: s1rn 14232 s1cl 14235 s1dmALT 14242 s1fv 14243 s111 14248 repsw1 14424 s1co 14474 s2prop 14548 ofs1 14609 gsumws1 18391 uspgr1ewop 27518 usgr2v1e2w 27522 0wlkons1 28386 s1f1 31119 cshw1s2 31134 ofcs1 32423 signstf0 32447 |
Copyright terms: Public domain | W3C validator |