| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1val | Structured version Visualization version GIF version | ||
| Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1val | ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14568 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | fvi 6940 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) | |
| 3 | 2 | opeq2d 4847 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈0, ( I ‘𝐴)〉 = 〈0, 𝐴〉) |
| 4 | 3 | sneqd 4604 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈0, ( I ‘𝐴)〉} = {〈0, 𝐴〉}) |
| 5 | 1, 4 | eqtrid 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 I cid 5535 ‘cfv 6514 0cc0 11075 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-s1 14568 |
| This theorem is referenced by: s1rn 14571 s1cl 14574 s1dmALT 14581 s1fv 14582 s111 14587 repsw1 14755 s1co 14806 s2prop 14880 ofs1 14943 gsumws1 18772 uspgr1ewop 29182 usgr2v1e2w 29186 0wlkons1 30057 s1f1 32871 cshw1s2 32889 ofcs1 34542 signstf0 34566 |
| Copyright terms: Public domain | W3C validator |