![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1val | Structured version Visualization version GIF version |
Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1val | ⊢ (𝐴 ∈ 𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14578 | . 2 ⊢ ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩} | |
2 | fvi 6971 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) | |
3 | 2 | opeq2d 4881 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, 𝐴⟩) |
4 | 3 | sneqd 4641 | . 2 ⊢ (𝐴 ∈ 𝑉 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, 𝐴⟩}) |
5 | 1, 4 | eqtrid 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4629 ⟨cop 4635 I cid 5574 ‘cfv 6547 0cc0 11138 ⟨“cs1 14577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-s1 14578 |
This theorem is referenced by: s1rn 14581 s1cl 14584 s1dmALT 14591 s1fv 14592 s111 14597 repsw1 14765 s1co 14816 s2prop 14890 ofs1 14949 gsumws1 18794 uspgr1ewop 29117 usgr2v1e2w 29121 0wlkons1 29987 s1f1 32723 cshw1s2 32738 ofcs1 34246 signstf0 34270 |
Copyright terms: Public domain | W3C validator |