| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1val | Structured version Visualization version GIF version | ||
| Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1val | ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14521 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | fvi 6903 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ‘𝐴) = 𝐴) | |
| 3 | 2 | opeq2d 4834 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈0, ( I ‘𝐴)〉 = 〈0, 𝐴〉) |
| 4 | 3 | sneqd 4591 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈0, ( I ‘𝐴)〉} = {〈0, 𝐴〉}) |
| 5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 〈cop 4585 I cid 5517 ‘cfv 6486 0cc0 11028 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-s1 14521 |
| This theorem is referenced by: s1rn 14524 s1cl 14527 s1dmALT 14534 s1fv 14535 s111 14540 repsw1 14707 s1co 14758 s2prop 14832 ofs1 14895 gsumws1 18730 uspgr1ewop 29211 usgr2v1e2w 29215 0wlkons1 30083 s1f1 32897 cshw1s2 32915 ofcs1 34511 signstf0 34535 |
| Copyright terms: Public domain | W3C validator |