MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1val Structured version   Visualization version   GIF version

Theorem s1val 14493
Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1val (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})

Proof of Theorem s1val
StepHypRef Expression
1 df-s1 14491 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 fvi 6922 . . . 4 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
32opeq2d 4842 . . 3 (𝐴𝑉 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, 𝐴⟩)
43sneqd 4603 . 2 (𝐴𝑉 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, 𝐴⟩})
51, 4eqtrid 2789 1 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {csn 4591  cop 4597   I cid 5535  cfv 6501  0cc0 11058  ⟨“cs1 14490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-s1 14491
This theorem is referenced by:  s1rn  14494  s1cl  14497  s1dmALT  14504  s1fv  14505  s111  14510  repsw1  14678  s1co  14729  s2prop  14803  ofs1  14862  gsumws1  18655  uspgr1ewop  28238  usgr2v1e2w  28242  0wlkons1  29107  s1f1  31841  cshw1s2  31856  ofcs1  33196  signstf0  33220
  Copyright terms: Public domain W3C validator