| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version | ||
| Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
| Ref | Expression |
|---|---|
| funcnvs1 | ⊢ Fun ◡〈“𝐴”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvsn 6591 | . 2 ⊢ Fun ◡{〈0, ( I ‘𝐴)〉} | |
| 2 | df-s1 14619 | . . . 4 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 3 | 2 | cnveqi 5859 | . . 3 ⊢ ◡〈“𝐴”〉 = ◡{〈0, ( I ‘𝐴)〉} |
| 4 | 3 | funeqi 6562 | . 2 ⊢ (Fun ◡〈“𝐴”〉 ↔ Fun ◡{〈0, ( I ‘𝐴)〉}) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Fun ◡〈“𝐴”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: {csn 4606 〈cop 4612 I cid 5552 ◡ccnv 5658 Fun wfun 6530 ‘cfv 6536 0cc0 11134 〈“cs1 14618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 df-s1 14619 |
| This theorem is referenced by: uhgrwkspthlem1 29740 1trld 30128 |
| Copyright terms: Public domain | W3C validator |