![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version |
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
funcnvs1 | ⊢ Fun ◡⟨“𝐴”⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6608 | . 2 ⊢ Fun ◡{⟨0, ( I ‘𝐴)⟩} | |
2 | df-s1 14586 | . . . 4 ⊢ ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩} | |
3 | 2 | cnveqi 5881 | . . 3 ⊢ ◡⟨“𝐴”⟩ = ◡{⟨0, ( I ‘𝐴)⟩} |
4 | 3 | funeqi 6579 | . 2 ⊢ (Fun ◡⟨“𝐴”⟩ ↔ Fun ◡{⟨0, ( I ‘𝐴)⟩}) |
5 | 1, 4 | mpbir 230 | 1 ⊢ Fun ◡⟨“𝐴”⟩ |
Colors of variables: wff setvar class |
Syntax hints: {csn 4632 ⟨cop 4638 I cid 5579 ◡ccnv 5681 Fun wfun 6547 ‘cfv 6553 0cc0 11146 ⟨“cs1 14585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2529 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-fun 6555 df-s1 14586 |
This theorem is referenced by: uhgrwkspthlem1 29587 1trld 29972 |
Copyright terms: Public domain | W3C validator |