MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvs1 Structured version   Visualization version   GIF version

Theorem funcnvs1 14903
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.)
Assertion
Ref Expression
funcnvs1 Fun ⟨“𝐴”⟩

Proof of Theorem funcnvs1
StepHypRef Expression
1 funcnvsn 6608 . 2 Fun {⟨0, ( I ‘𝐴)⟩}
2 df-s1 14586 . . . 4 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
32cnveqi 5881 . . 3 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
43funeqi 6579 . 2 (Fun ⟨“𝐴”⟩ ↔ Fun {⟨0, ( I ‘𝐴)⟩})
51, 4mpbir 230 1 Fun ⟨“𝐴”⟩
Colors of variables: wff setvar class
Syntax hints:  {csn 4632  cop 4638   I cid 5579  ccnv 5681  Fun wfun 6547  cfv 6553  0cc0 11146  ⟨“cs1 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2529  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-fun 6555  df-s1 14586
This theorem is referenced by:  uhgrwkspthlem1  29587  1trld  29972
  Copyright terms: Public domain W3C validator