![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version |
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
funcnvs1 | ⊢ Fun ◡〈“𝐴”〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6618 | . 2 ⊢ Fun ◡{〈0, ( I ‘𝐴)〉} | |
2 | df-s1 14631 | . . . 4 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
3 | 2 | cnveqi 5888 | . . 3 ⊢ ◡〈“𝐴”〉 = ◡{〈0, ( I ‘𝐴)〉} |
4 | 3 | funeqi 6589 | . 2 ⊢ (Fun ◡〈“𝐴”〉 ↔ Fun ◡{〈0, ( I ‘𝐴)〉}) |
5 | 1, 4 | mpbir 231 | 1 ⊢ Fun ◡〈“𝐴”〉 |
Colors of variables: wff setvar class |
Syntax hints: {csn 4631 〈cop 4637 I cid 5582 ◡ccnv 5688 Fun wfun 6557 ‘cfv 6563 0cc0 11153 〈“cs1 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-fun 6565 df-s1 14631 |
This theorem is referenced by: uhgrwkspthlem1 29786 1trld 30171 |
Copyright terms: Public domain | W3C validator |