![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version |
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
funcnvs1 | ⊢ Fun ◡〈“𝐴”〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6628 | . 2 ⊢ Fun ◡{〈0, ( I ‘𝐴)〉} | |
2 | df-s1 14644 | . . . 4 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
3 | 2 | cnveqi 5899 | . . 3 ⊢ ◡〈“𝐴”〉 = ◡{〈0, ( I ‘𝐴)〉} |
4 | 3 | funeqi 6599 | . 2 ⊢ (Fun ◡〈“𝐴”〉 ↔ Fun ◡{〈0, ( I ‘𝐴)〉}) |
5 | 1, 4 | mpbir 231 | 1 ⊢ Fun ◡〈“𝐴”〉 |
Colors of variables: wff setvar class |
Syntax hints: {csn 4648 〈cop 4654 I cid 5592 ◡ccnv 5699 Fun wfun 6567 ‘cfv 6573 0cc0 11184 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 df-s1 14644 |
This theorem is referenced by: uhgrwkspthlem1 29789 1trld 30174 |
Copyright terms: Public domain | W3C validator |