![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version |
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
funcnvs1 | ⊢ Fun ◡⟨“𝐴”⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6599 | . 2 ⊢ Fun ◡{⟨0, ( I ‘𝐴)⟩} | |
2 | df-s1 14546 | . . . 4 ⊢ ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩} | |
3 | 2 | cnveqi 5875 | . . 3 ⊢ ◡⟨“𝐴”⟩ = ◡{⟨0, ( I ‘𝐴)⟩} |
4 | 3 | funeqi 6570 | . 2 ⊢ (Fun ◡⟨“𝐴”⟩ ↔ Fun ◡{⟨0, ( I ‘𝐴)⟩}) |
5 | 1, 4 | mpbir 230 | 1 ⊢ Fun ◡⟨“𝐴”⟩ |
Colors of variables: wff setvar class |
Syntax hints: {csn 4629 ⟨cop 4635 I cid 5574 ◡ccnv 5676 Fun wfun 6538 ‘cfv 6544 0cc0 11110 ⟨“cs1 14545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-fun 6546 df-s1 14546 |
This theorem is referenced by: uhgrwkspthlem1 29010 1trld 29395 |
Copyright terms: Public domain | W3C validator |