MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvs1 Structured version   Visualization version   GIF version

Theorem funcnvs1 14961
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.)
Assertion
Ref Expression
funcnvs1 Fun ⟨“𝐴”⟩

Proof of Theorem funcnvs1
StepHypRef Expression
1 funcnvsn 6628 . 2 Fun {⟨0, ( I ‘𝐴)⟩}
2 df-s1 14644 . . . 4 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
32cnveqi 5899 . . 3 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
43funeqi 6599 . 2 (Fun ⟨“𝐴”⟩ ↔ Fun {⟨0, ( I ‘𝐴)⟩})
51, 4mpbir 231 1 Fun ⟨“𝐴”⟩
Colors of variables: wff setvar class
Syntax hints:  {csn 4648  cop 4654   I cid 5592  ccnv 5699  Fun wfun 6567  cfv 6573  0cc0 11184  ⟨“cs1 14643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575  df-s1 14644
This theorem is referenced by:  uhgrwkspthlem1  29789  1trld  30174
  Copyright terms: Public domain W3C validator