| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version | ||
| Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
| Ref | Expression |
|---|---|
| funcnvs1 | ⊢ Fun ◡〈“𝐴”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvsn 6531 | . 2 ⊢ Fun ◡{〈0, ( I ‘𝐴)〉} | |
| 2 | df-s1 14501 | . . . 4 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 3 | 2 | cnveqi 5814 | . . 3 ⊢ ◡〈“𝐴”〉 = ◡{〈0, ( I ‘𝐴)〉} |
| 4 | 3 | funeqi 6502 | . 2 ⊢ (Fun ◡〈“𝐴”〉 ↔ Fun ◡{〈0, ( I ‘𝐴)〉}) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Fun ◡〈“𝐴”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: {csn 4576 〈cop 4582 I cid 5510 ◡ccnv 5615 Fun wfun 6475 ‘cfv 6481 0cc0 11003 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-fun 6483 df-s1 14501 |
| This theorem is referenced by: uhgrwkspthlem1 29729 1trld 30117 |
| Copyright terms: Public domain | W3C validator |