MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvs1 Structured version   Visualization version   GIF version

Theorem funcnvs1 14936
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.)
Assertion
Ref Expression
funcnvs1 Fun ⟨“𝐴”⟩

Proof of Theorem funcnvs1
StepHypRef Expression
1 funcnvsn 6591 . 2 Fun {⟨0, ( I ‘𝐴)⟩}
2 df-s1 14619 . . . 4 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
32cnveqi 5859 . . 3 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
43funeqi 6562 . 2 (Fun ⟨“𝐴”⟩ ↔ Fun {⟨0, ( I ‘𝐴)⟩})
51, 4mpbir 231 1 Fun ⟨“𝐴”⟩
Colors of variables: wff setvar class
Syntax hints:  {csn 4606  cop 4612   I cid 5552  ccnv 5658  Fun wfun 6530  cfv 6536  0cc0 11134  ⟨“cs1 14618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-fun 6538  df-s1 14619
This theorem is referenced by:  uhgrwkspthlem1  29740  1trld  30128
  Copyright terms: Public domain W3C validator