MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvs1 Structured version   Visualization version   GIF version

Theorem funcnvs1 14816
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.)
Assertion
Ref Expression
funcnvs1 Fun ⟨“𝐴”⟩

Proof of Theorem funcnvs1
StepHypRef Expression
1 funcnvsn 6531 . 2 Fun {⟨0, ( I ‘𝐴)⟩}
2 df-s1 14501 . . . 4 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
32cnveqi 5814 . . 3 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
43funeqi 6502 . 2 (Fun ⟨“𝐴”⟩ ↔ Fun {⟨0, ( I ‘𝐴)⟩})
51, 4mpbir 231 1 Fun ⟨“𝐴”⟩
Colors of variables: wff setvar class
Syntax hints:  {csn 4576  cop 4582   I cid 5510  ccnv 5615  Fun wfun 6475  cfv 6481  0cc0 11003  ⟨“cs1 14500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-fun 6483  df-s1 14501
This theorem is referenced by:  uhgrwkspthlem1  29729  1trld  30117
  Copyright terms: Public domain W3C validator