MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvs1 Structured version   Visualization version   GIF version

Theorem funcnvs1 14863
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.)
Assertion
Ref Expression
funcnvs1 Fun ⟨“𝐴”⟩

Proof of Theorem funcnvs1
StepHypRef Expression
1 funcnvsn 6599 . 2 Fun {⟨0, ( I ‘𝐴)⟩}
2 df-s1 14546 . . . 4 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
32cnveqi 5875 . . 3 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
43funeqi 6570 . 2 (Fun ⟨“𝐴”⟩ ↔ Fun {⟨0, ( I ‘𝐴)⟩})
51, 4mpbir 230 1 Fun ⟨“𝐴”⟩
Colors of variables: wff setvar class
Syntax hints:  {csn 4629  cop 4635   I cid 5574  ccnv 5676  Fun wfun 6538  cfv 6544  0cc0 11110  ⟨“cs1 14545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-fun 6546  df-s1 14546
This theorem is referenced by:  uhgrwkspthlem1  29010  1trld  29395
  Copyright terms: Public domain W3C validator