![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvs1 | Structured version Visualization version GIF version |
Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
funcnvs1 | ⊢ Fun ◡⟨“𝐴”⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6592 | . 2 ⊢ Fun ◡{⟨0, ( I ‘𝐴)⟩} | |
2 | df-s1 14552 | . . . 4 ⊢ ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩} | |
3 | 2 | cnveqi 5868 | . . 3 ⊢ ◡⟨“𝐴”⟩ = ◡{⟨0, ( I ‘𝐴)⟩} |
4 | 3 | funeqi 6563 | . 2 ⊢ (Fun ◡⟨“𝐴”⟩ ↔ Fun ◡{⟨0, ( I ‘𝐴)⟩}) |
5 | 1, 4 | mpbir 230 | 1 ⊢ Fun ◡⟨“𝐴”⟩ |
Colors of variables: wff setvar class |
Syntax hints: {csn 4623 ⟨cop 4629 I cid 5566 ◡ccnv 5668 Fun wfun 6531 ‘cfv 6537 0cc0 11112 ⟨“cs1 14551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-fun 6539 df-s1 14552 |
This theorem is referenced by: uhgrwkspthlem1 29519 1trld 29904 |
Copyright terms: Public domain | W3C validator |