MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1nz Structured version   Visualization version   GIF version

Theorem s1nz 14642
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
Assertion
Ref Expression
s1nz ⟨“𝐴”⟩ ≠ ∅

Proof of Theorem s1nz
StepHypRef Expression
1 df-s1 14631 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 opex 5475 . . 3 ⟨0, ( I ‘𝐴)⟩ ∈ V
32snnz 4781 . 2 {⟨0, ( I ‘𝐴)⟩} ≠ ∅
41, 3eqnetri 3009 1 ⟨“𝐴”⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2938  c0 4339  {csn 4631  cop 4637   I cid 5582  cfv 6563  0cc0 11153  ⟨“cs1 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-s1 14631
This theorem is referenced by:  lswccats1  14669  efgs1  19768  singoutnword  46836
  Copyright terms: Public domain W3C validator