| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1nz | Structured version Visualization version GIF version | ||
| Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| s1nz | ⊢ 〈“𝐴”〉 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14616 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | opex 5449 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 3 | 2 | snnz 4756 | . 2 ⊢ {〈0, ( I ‘𝐴)〉} ≠ ∅ |
| 4 | 1, 3 | eqnetri 3001 | 1 ⊢ 〈“𝐴”〉 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2931 ∅c0 4313 {csn 4606 〈cop 4612 I cid 5557 ‘cfv 6541 0cc0 11137 〈“cs1 14615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-s1 14616 |
| This theorem is referenced by: lswccats1 14654 efgs1 19721 singoutnword 46854 |
| Copyright terms: Public domain | W3C validator |