MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1nz Structured version   Visualization version   GIF version

Theorem s1nz 14555
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
Assertion
Ref Expression
s1nz ⟨“𝐴”⟩ ≠ ∅

Proof of Theorem s1nz
StepHypRef Expression
1 df-s1 14544 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 opex 5455 . . 3 ⟨0, ( I ‘𝐴)⟩ ∈ V
32snnz 4773 . 2 {⟨0, ( I ‘𝐴)⟩} ≠ ∅
41, 3eqnetri 3003 1 ⟨“𝐴”⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2932  c0 4315  {csn 4621  cop 4627   I cid 5564  cfv 6534  0cc0 11107  ⟨“cs1 14543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-s1 14544
This theorem is referenced by:  lswccats1  14582  efgs1  19647  singoutnword  46106
  Copyright terms: Public domain W3C validator