![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1nz | Structured version Visualization version GIF version |
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
Ref | Expression |
---|---|
s1nz | ⊢ 〈“𝐴”〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14631 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | opex 5475 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
3 | 2 | snnz 4781 | . 2 ⊢ {〈0, ( I ‘𝐴)〉} ≠ ∅ |
4 | 1, 3 | eqnetri 3009 | 1 ⊢ 〈“𝐴”〉 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 ∅c0 4339 {csn 4631 〈cop 4637 I cid 5582 ‘cfv 6563 0cc0 11153 〈“cs1 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-s1 14631 |
This theorem is referenced by: lswccats1 14669 efgs1 19768 singoutnword 46836 |
Copyright terms: Public domain | W3C validator |