Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1nz | Structured version Visualization version GIF version |
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
Ref | Expression |
---|---|
s1nz | ⊢ 〈“𝐴”〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14290 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | opex 5379 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
3 | 2 | snnz 4714 | . 2 ⊢ {〈0, ( I ‘𝐴)〉} ≠ ∅ |
4 | 1, 3 | eqnetri 3014 | 1 ⊢ 〈“𝐴”〉 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∅c0 4258 {csn 4563 〈cop 4569 I cid 5485 ‘cfv 6428 0cc0 10860 〈“cs1 14289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3433 df-dif 3891 df-un 3893 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-s1 14290 |
This theorem is referenced by: lswccats1 14333 efgs1 19330 singoutnword 46474 |
Copyright terms: Public domain | W3C validator |