![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1nz | Structured version Visualization version GIF version |
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
Ref | Expression |
---|---|
s1nz | ⊢ 〈“𝐴”〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s1 14572 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
2 | opex 5460 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
3 | 2 | snnz 4776 | . 2 ⊢ {〈0, ( I ‘𝐴)〉} ≠ ∅ |
4 | 1, 3 | eqnetri 3007 | 1 ⊢ 〈“𝐴”〉 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2936 ∅c0 4318 {csn 4624 〈cop 4630 I cid 5569 ‘cfv 6542 0cc0 11132 〈“cs1 14571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-s1 14572 |
This theorem is referenced by: lswccats1 14610 efgs1 19683 singoutnword 46262 |
Copyright terms: Public domain | W3C validator |