| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1nz | Structured version Visualization version GIF version | ||
| Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| s1nz | ⊢ 〈“𝐴”〉 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s1 14501 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 2 | opex 5404 | . . 3 ⊢ 〈0, ( I ‘𝐴)〉 ∈ V | |
| 3 | 2 | snnz 4729 | . 2 ⊢ {〈0, ( I ‘𝐴)〉} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2998 | 1 ⊢ 〈“𝐴”〉 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4283 {csn 4576 〈cop 4582 I cid 5510 ‘cfv 6481 0cc0 11003 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-s1 14501 |
| This theorem is referenced by: lswccats1 14539 efgs1 19645 |
| Copyright terms: Public domain | W3C validator |