MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1nz Structured version   Visualization version   GIF version

Theorem s1nz 14553
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
Assertion
Ref Expression
s1nz ⟨“𝐴”⟩ ≠ ∅

Proof of Theorem s1nz
StepHypRef Expression
1 df-s1 14542 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 opex 5463 . . 3 ⟨0, ( I ‘𝐴)⟩ ∈ V
32snnz 4779 . 2 {⟨0, ( I ‘𝐴)⟩} ≠ ∅
41, 3eqnetri 3011 1 ⟨“𝐴”⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2940  c0 4321  {csn 4627  cop 4633   I cid 5572  cfv 6540  0cc0 11106  ⟨“cs1 14541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-s1 14542
This theorem is referenced by:  lswccats1  14580  efgs1  19597  singoutnword  45582
  Copyright terms: Public domain W3C validator