MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1nz Structured version   Visualization version   GIF version

Theorem s1nz 14240
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
Assertion
Ref Expression
s1nz ⟨“𝐴”⟩ ≠ ∅

Proof of Theorem s1nz
StepHypRef Expression
1 df-s1 14229 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 opex 5373 . . 3 ⟨0, ( I ‘𝐴)⟩ ∈ V
32snnz 4709 . 2 {⟨0, ( I ‘𝐴)⟩} ≠ ∅
41, 3eqnetri 3013 1 ⟨“𝐴”⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2942  c0 4253  {csn 4558  cop 4564   I cid 5479  cfv 6418  0cc0 10802  ⟨“cs1 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-s1 14229
This theorem is referenced by:  lswccats1  14272  efgs1  19256
  Copyright terms: Public domain W3C validator