MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1nz Structured version   Visualization version   GIF version

Theorem s1nz 14645
Description: A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
Assertion
Ref Expression
s1nz ⟨“𝐴”⟩ ≠ ∅

Proof of Theorem s1nz
StepHypRef Expression
1 df-s1 14634 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 opex 5469 . . 3 ⟨0, ( I ‘𝐴)⟩ ∈ V
32snnz 4776 . 2 {⟨0, ( I ‘𝐴)⟩} ≠ ∅
41, 3eqnetri 3011 1 ⟨“𝐴”⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2940  c0 4333  {csn 4626  cop 4632   I cid 5577  cfv 6561  0cc0 11155  ⟨“cs1 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-s1 14634
This theorem is referenced by:  lswccats1  14672  efgs1  19753  singoutnword  46897
  Copyright terms: Public domain W3C validator