![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1eq | Structured version Visualization version GIF version |
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1eq | ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵)) | |
2 | 1 | opeq2d 4904 | . . 3 ⊢ (𝐴 = 𝐵 → 〈0, ( I ‘𝐴)〉 = 〈0, ( I ‘𝐵)〉) |
3 | 2 | sneqd 4660 | . 2 ⊢ (𝐴 = 𝐵 → {〈0, ( I ‘𝐴)〉} = {〈0, ( I ‘𝐵)〉}) |
4 | df-s1 14644 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
5 | df-s1 14644 | . 2 ⊢ 〈“𝐵”〉 = {〈0, ( I ‘𝐵)〉} | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {csn 4648 〈cop 4654 I cid 5592 ‘cfv 6573 0cc0 11184 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-s1 14644 |
This theorem is referenced by: s1eqd 14649 wrdl1exs1 14661 wrdl1s1 14662 ccats1pfxeqrex 14763 wrdind 14770 wrd2ind 14771 reuccatpfxs1lem 14794 reuccatpfxs1 14795 revs1 14813 vrmdval 18892 frgpup3lem 19819 vdegp1ci 29574 clwwlknonwwlknonb 30138 mrsubcv 35478 mrsubrn 35481 elmrsubrn 35488 mrsubvrs 35490 mvhval 35502 |
Copyright terms: Public domain | W3C validator |