| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eq | ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵)) | |
| 2 | 1 | opeq2d 4834 | . . 3 ⊢ (𝐴 = 𝐵 → 〈0, ( I ‘𝐴)〉 = 〈0, ( I ‘𝐵)〉) |
| 3 | 2 | sneqd 4591 | . 2 ⊢ (𝐴 = 𝐵 → {〈0, ( I ‘𝐴)〉} = {〈0, ( I ‘𝐵)〉}) |
| 4 | df-s1 14521 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 5 | df-s1 14521 | . 2 ⊢ 〈“𝐵”〉 = {〈0, ( I ‘𝐵)〉} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4579 〈cop 4585 I cid 5517 ‘cfv 6486 0cc0 11028 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-s1 14521 |
| This theorem is referenced by: s1eqd 14526 wrdl1exs1 14538 wrdl1s1 14539 ccats1pfxeqrex 14639 wrdind 14646 wrd2ind 14647 reuccatpfxs1lem 14670 reuccatpfxs1 14671 revs1 14689 vrmdval 18749 frgpup3lem 19674 vdegp1ci 29502 clwwlknonwwlknonb 30068 mrsubcv 35482 mrsubrn 35485 elmrsubrn 35492 mrsubvrs 35494 mvhval 35506 |
| Copyright terms: Public domain | W3C validator |