Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1eq | Structured version Visualization version GIF version |
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1eq | ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵)) | |
2 | 1 | opeq2d 4808 | . . 3 ⊢ (𝐴 = 𝐵 → 〈0, ( I ‘𝐴)〉 = 〈0, ( I ‘𝐵)〉) |
3 | 2 | sneqd 4570 | . 2 ⊢ (𝐴 = 𝐵 → {〈0, ( I ‘𝐴)〉} = {〈0, ( I ‘𝐵)〉}) |
4 | df-s1 14229 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
5 | df-s1 14229 | . 2 ⊢ 〈“𝐵”〉 = {〈0, ( I ‘𝐵)〉} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {csn 4558 〈cop 4564 I cid 5479 ‘cfv 6418 0cc0 10802 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-s1 14229 |
This theorem is referenced by: s1eqd 14234 wrdl1exs1 14246 wrdl1s1 14247 ccats1pfxeqrex 14356 wrdind 14363 wrd2ind 14364 reuccatpfxs1lem 14387 reuccatpfxs1 14388 revs1 14406 vrmdval 18411 frgpup3lem 19298 vdegp1ci 27808 clwwlknonwwlknonb 28371 mrsubcv 33372 mrsubrn 33375 elmrsubrn 33382 mrsubvrs 33384 mvhval 33396 |
Copyright terms: Public domain | W3C validator |