MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eq Structured version   Visualization version   GIF version

Theorem s1eq 14586
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 6896 . . . 4 (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵))
21opeq2d 4882 . . 3 (𝐴 = 𝐵 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, ( I ‘𝐵)⟩)
32sneqd 4642 . 2 (𝐴 = 𝐵 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, ( I ‘𝐵)⟩})
4 df-s1 14582 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
5 df-s1 14582 . 2 ⟨“𝐵”⟩ = {⟨0, ( I ‘𝐵)⟩}
63, 4, 53eqtr4g 2790 1 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  {csn 4630  cop 4636   I cid 5575  cfv 6549  0cc0 11140  ⟨“cs1 14581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-s1 14582
This theorem is referenced by:  s1eqd  14587  wrdl1exs1  14599  wrdl1s1  14600  ccats1pfxeqrex  14701  wrdind  14708  wrd2ind  14709  reuccatpfxs1lem  14732  reuccatpfxs1  14733  revs1  14751  vrmdval  18817  frgpup3lem  19744  vdegp1ci  29424  clwwlknonwwlknonb  29988  mrsubcv  35251  mrsubrn  35254  elmrsubrn  35261  mrsubvrs  35263  mvhval  35275
  Copyright terms: Public domain W3C validator