MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eq Structured version   Visualization version   GIF version

Theorem s1eq 14233
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵))
21opeq2d 4808 . . 3 (𝐴 = 𝐵 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, ( I ‘𝐵)⟩)
32sneqd 4570 . 2 (𝐴 = 𝐵 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, ( I ‘𝐵)⟩})
4 df-s1 14229 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
5 df-s1 14229 . 2 ⟨“𝐵”⟩ = {⟨0, ( I ‘𝐵)⟩}
63, 4, 53eqtr4g 2804 1 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {csn 4558  cop 4564   I cid 5479  cfv 6418  0cc0 10802  ⟨“cs1 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-s1 14229
This theorem is referenced by:  s1eqd  14234  wrdl1exs1  14246  wrdl1s1  14247  ccats1pfxeqrex  14356  wrdind  14363  wrd2ind  14364  reuccatpfxs1lem  14387  reuccatpfxs1  14388  revs1  14406  vrmdval  18411  frgpup3lem  19298  vdegp1ci  27808  clwwlknonwwlknonb  28371  mrsubcv  33372  mrsubrn  33375  elmrsubrn  33382  mrsubvrs  33384  mvhval  33396
  Copyright terms: Public domain W3C validator