| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eq | ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵)) | |
| 2 | 1 | opeq2d 4844 | . . 3 ⊢ (𝐴 = 𝐵 → 〈0, ( I ‘𝐴)〉 = 〈0, ( I ‘𝐵)〉) |
| 3 | 2 | sneqd 4601 | . 2 ⊢ (𝐴 = 𝐵 → {〈0, ( I ‘𝐴)〉} = {〈0, ( I ‘𝐵)〉}) |
| 4 | df-s1 14561 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 5 | df-s1 14561 | . 2 ⊢ 〈“𝐵”〉 = {〈0, ( I ‘𝐵)〉} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4589 〈cop 4595 I cid 5532 ‘cfv 6511 0cc0 11068 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-s1 14561 |
| This theorem is referenced by: s1eqd 14566 wrdl1exs1 14578 wrdl1s1 14579 ccats1pfxeqrex 14680 wrdind 14687 wrd2ind 14688 reuccatpfxs1lem 14711 reuccatpfxs1 14712 revs1 14730 vrmdval 18784 frgpup3lem 19707 vdegp1ci 29466 clwwlknonwwlknonb 30035 mrsubcv 35497 mrsubrn 35500 elmrsubrn 35507 mrsubvrs 35509 mvhval 35521 |
| Copyright terms: Public domain | W3C validator |