MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eq Structured version   Visualization version   GIF version

Theorem s1eq 14550
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 6892 . . . 4 (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵))
21opeq2d 4881 . . 3 (𝐴 = 𝐵 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, ( I ‘𝐵)⟩)
32sneqd 4641 . 2 (𝐴 = 𝐵 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, ( I ‘𝐵)⟩})
4 df-s1 14546 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
5 df-s1 14546 . 2 ⟨“𝐵”⟩ = {⟨0, ( I ‘𝐵)⟩}
63, 4, 53eqtr4g 2798 1 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  {csn 4629  cop 4635   I cid 5574  cfv 6544  0cc0 11110  ⟨“cs1 14545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-s1 14546
This theorem is referenced by:  s1eqd  14551  wrdl1exs1  14563  wrdl1s1  14564  ccats1pfxeqrex  14665  wrdind  14672  wrd2ind  14673  reuccatpfxs1lem  14696  reuccatpfxs1  14697  revs1  14715  vrmdval  18738  frgpup3lem  19645  vdegp1ci  28795  clwwlknonwwlknonb  29359  mrsubcv  34501  mrsubrn  34504  elmrsubrn  34511  mrsubvrs  34513  mvhval  34525
  Copyright terms: Public domain W3C validator