MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eq Structured version   Visualization version   GIF version

Theorem s1eq 14648
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵))
21opeq2d 4904 . . 3 (𝐴 = 𝐵 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, ( I ‘𝐵)⟩)
32sneqd 4660 . 2 (𝐴 = 𝐵 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, ( I ‘𝐵)⟩})
4 df-s1 14644 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
5 df-s1 14644 . 2 ⟨“𝐵”⟩ = {⟨0, ( I ‘𝐵)⟩}
63, 4, 53eqtr4g 2805 1 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {csn 4648  cop 4654   I cid 5592  cfv 6573  0cc0 11184  ⟨“cs1 14643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-s1 14644
This theorem is referenced by:  s1eqd  14649  wrdl1exs1  14661  wrdl1s1  14662  ccats1pfxeqrex  14763  wrdind  14770  wrd2ind  14771  reuccatpfxs1lem  14794  reuccatpfxs1  14795  revs1  14813  vrmdval  18892  frgpup3lem  19819  vdegp1ci  29574  clwwlknonwwlknonb  30138  mrsubcv  35478  mrsubrn  35481  elmrsubrn  35488  mrsubvrs  35490  mvhval  35502
  Copyright terms: Public domain W3C validator