MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eq Structured version   Visualization version   GIF version

Theorem s1eq 14525
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵))
21opeq2d 4834 . . 3 (𝐴 = 𝐵 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, ( I ‘𝐵)⟩)
32sneqd 4591 . 2 (𝐴 = 𝐵 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, ( I ‘𝐵)⟩})
4 df-s1 14521 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
5 df-s1 14521 . 2 ⟨“𝐵”⟩ = {⟨0, ( I ‘𝐵)⟩}
63, 4, 53eqtr4g 2789 1 (𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {csn 4579  cop 4585   I cid 5517  cfv 6486  0cc0 11028  ⟨“cs1 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-s1 14521
This theorem is referenced by:  s1eqd  14526  wrdl1exs1  14538  wrdl1s1  14539  ccats1pfxeqrex  14639  wrdind  14646  wrd2ind  14647  reuccatpfxs1lem  14670  reuccatpfxs1  14671  revs1  14689  vrmdval  18749  frgpup3lem  19674  vdegp1ci  29502  clwwlknonwwlknonb  30068  mrsubcv  35482  mrsubrn  35485  elmrsubrn  35492  mrsubvrs  35494  mvhval  35506
  Copyright terms: Public domain W3C validator