| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1eq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1eq | ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6875 | . . . 4 ⊢ (𝐴 = 𝐵 → ( I ‘𝐴) = ( I ‘𝐵)) | |
| 2 | 1 | opeq2d 4856 | . . 3 ⊢ (𝐴 = 𝐵 → 〈0, ( I ‘𝐴)〉 = 〈0, ( I ‘𝐵)〉) |
| 3 | 2 | sneqd 4613 | . 2 ⊢ (𝐴 = 𝐵 → {〈0, ( I ‘𝐴)〉} = {〈0, ( I ‘𝐵)〉}) |
| 4 | df-s1 14612 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 5 | df-s1 14612 | . 2 ⊢ 〈“𝐵”〉 = {〈0, ( I ‘𝐵)〉} | |
| 6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4601 〈cop 4607 I cid 5547 ‘cfv 6530 0cc0 11127 〈“cs1 14611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-s1 14612 |
| This theorem is referenced by: s1eqd 14617 wrdl1exs1 14629 wrdl1s1 14630 ccats1pfxeqrex 14731 wrdind 14738 wrd2ind 14739 reuccatpfxs1lem 14762 reuccatpfxs1 14763 revs1 14781 vrmdval 18833 frgpup3lem 19756 vdegp1ci 29464 clwwlknonwwlknonb 30033 mrsubcv 35478 mrsubrn 35481 elmrsubrn 35488 mrsubvrs 35490 mvhval 35502 |
| Copyright terms: Public domain | W3C validator |