Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ids1 | Structured version Visualization version GIF version |
Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
ids1 | ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . . . 5 ⊢ ( I ‘𝐴) ∈ V | |
2 | fvi 6844 | . . . . 5 ⊢ (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ( I ‘( I ‘𝐴)) = ( I ‘𝐴) |
4 | 3 | opeq2i 4808 | . . 3 ⊢ 〈0, ( I ‘( I ‘𝐴))〉 = 〈0, ( I ‘𝐴)〉 |
5 | 4 | sneqi 4572 | . 2 ⊢ {〈0, ( I ‘( I ‘𝐴))〉} = {〈0, ( I ‘𝐴)〉} |
6 | df-s1 14301 | . 2 ⊢ 〈“( I ‘𝐴)”〉 = {〈0, ( I ‘( I ‘𝐴))〉} | |
7 | df-s1 14301 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
8 | 5, 6, 7 | 3eqtr4ri 2777 | 1 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 I cid 5488 ‘cfv 6433 0cc0 10871 〈“cs1 14300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-s1 14301 |
This theorem is referenced by: s1prc 14309 s1cli 14310 revs1 14478 |
Copyright terms: Public domain | W3C validator |