| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ids1 | Structured version Visualization version GIF version | ||
| Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| ids1 | ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . . . 5 ⊢ ( I ‘𝐴) ∈ V | |
| 2 | fvi 6904 | . . . . 5 ⊢ (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ( I ‘( I ‘𝐴)) = ( I ‘𝐴) |
| 4 | 3 | opeq2i 4828 | . . 3 ⊢ 〈0, ( I ‘( I ‘𝐴))〉 = 〈0, ( I ‘𝐴)〉 |
| 5 | 4 | sneqi 4586 | . 2 ⊢ {〈0, ( I ‘( I ‘𝐴))〉} = {〈0, ( I ‘𝐴)〉} |
| 6 | df-s1 14506 | . 2 ⊢ 〈“( I ‘𝐴)”〉 = {〈0, ( I ‘( I ‘𝐴))〉} | |
| 7 | df-s1 14506 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2767 | 1 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 〈cop 4581 I cid 5513 ‘cfv 6486 0cc0 11013 〈“cs1 14505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-s1 14506 |
| This theorem is referenced by: s1prc 14514 s1cli 14515 revs1 14674 |
| Copyright terms: Public domain | W3C validator |