![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ids1 | Structured version Visualization version GIF version |
Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
ids1 | ⊢ ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6901 | . . . . 5 ⊢ ( I ‘𝐴) ∈ V | |
2 | fvi 6964 | . . . . 5 ⊢ (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ( I ‘( I ‘𝐴)) = ( I ‘𝐴) |
4 | 3 | opeq2i 4876 | . . 3 ⊢ ⟨0, ( I ‘( I ‘𝐴))⟩ = ⟨0, ( I ‘𝐴)⟩ |
5 | 4 | sneqi 4638 | . 2 ⊢ {⟨0, ( I ‘( I ‘𝐴))⟩} = {⟨0, ( I ‘𝐴)⟩} |
6 | df-s1 14542 | . 2 ⊢ ⟨“( I ‘𝐴)”⟩ = {⟨0, ( I ‘( I ‘𝐴))⟩} | |
7 | df-s1 14542 | . 2 ⊢ ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩} | |
8 | 5, 6, 7 | 3eqtr4ri 2771 | 1 ⊢ ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ⟨cop 4633 I cid 5572 ‘cfv 6540 0cc0 11106 ⟨“cs1 14541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-s1 14542 |
This theorem is referenced by: s1prc 14550 s1cli 14551 revs1 14711 |
Copyright terms: Public domain | W3C validator |