Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ids1 | Structured version Visualization version GIF version |
Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
ids1 | ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . . 5 ⊢ ( I ‘𝐴) ∈ V | |
2 | fvi 6826 | . . . . 5 ⊢ (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ( I ‘( I ‘𝐴)) = ( I ‘𝐴) |
4 | 3 | opeq2i 4805 | . . 3 ⊢ 〈0, ( I ‘( I ‘𝐴))〉 = 〈0, ( I ‘𝐴)〉 |
5 | 4 | sneqi 4569 | . 2 ⊢ {〈0, ( I ‘( I ‘𝐴))〉} = {〈0, ( I ‘𝐴)〉} |
6 | df-s1 14229 | . 2 ⊢ 〈“( I ‘𝐴)”〉 = {〈0, ( I ‘( I ‘𝐴))〉} | |
7 | df-s1 14229 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
8 | 5, 6, 7 | 3eqtr4ri 2777 | 1 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 I cid 5479 ‘cfv 6418 0cc0 10802 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-s1 14229 |
This theorem is referenced by: s1prc 14237 s1cli 14238 revs1 14406 |
Copyright terms: Public domain | W3C validator |