MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ids1 Structured version   Visualization version   GIF version

Theorem ids1 14040
Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
ids1 ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩

Proof of Theorem ids1
StepHypRef Expression
1 fvex 6687 . . . . 5 ( I ‘𝐴) ∈ V
2 fvi 6744 . . . . 5 (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴))
31, 2ax-mp 5 . . . 4 ( I ‘( I ‘𝐴)) = ( I ‘𝐴)
43opeq2i 4765 . . 3 ⟨0, ( I ‘( I ‘𝐴))⟩ = ⟨0, ( I ‘𝐴)⟩
54sneqi 4527 . 2 {⟨0, ( I ‘( I ‘𝐴))⟩} = {⟨0, ( I ‘𝐴)⟩}
6 df-s1 14039 . 2 ⟨“( I ‘𝐴)”⟩ = {⟨0, ( I ‘( I ‘𝐴))⟩}
7 df-s1 14039 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
85, 6, 73eqtr4ri 2772 1 ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2114  Vcvv 3398  {csn 4516  cop 4522   I cid 5428  cfv 6339  0cc0 10615  ⟨“cs1 14038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fv 6347  df-s1 14039
This theorem is referenced by:  s1prc  14047  s1cli  14048  revs1  14216
  Copyright terms: Public domain W3C validator