MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ids1 Structured version   Visualization version   GIF version

Theorem ids1 14562
Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
ids1 ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩

Proof of Theorem ids1
StepHypRef Expression
1 fvex 6871 . . . . 5 ( I ‘𝐴) ∈ V
2 fvi 6937 . . . . 5 (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴))
31, 2ax-mp 5 . . . 4 ( I ‘( I ‘𝐴)) = ( I ‘𝐴)
43opeq2i 4841 . . 3 ⟨0, ( I ‘( I ‘𝐴))⟩ = ⟨0, ( I ‘𝐴)⟩
54sneqi 4600 . 2 {⟨0, ( I ‘( I ‘𝐴))⟩} = {⟨0, ( I ‘𝐴)⟩}
6 df-s1 14561 . 2 ⟨“( I ‘𝐴)”⟩ = {⟨0, ( I ‘( I ‘𝐴))⟩}
7 df-s1 14561 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
85, 6, 73eqtr4ri 2763 1 ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595   I cid 5532  cfv 6511  0cc0 11068  ⟨“cs1 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-s1 14561
This theorem is referenced by:  s1prc  14569  s1cli  14570  revs1  14730
  Copyright terms: Public domain W3C validator