| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ids1 | Structured version Visualization version GIF version | ||
| Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| ids1 | ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6839 | . . . . 5 ⊢ ( I ‘𝐴) ∈ V | |
| 2 | fvi 6903 | . . . . 5 ⊢ (( I ‘𝐴) ∈ V → ( I ‘( I ‘𝐴)) = ( I ‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ( I ‘( I ‘𝐴)) = ( I ‘𝐴) |
| 4 | 3 | opeq2i 4831 | . . 3 ⊢ 〈0, ( I ‘( I ‘𝐴))〉 = 〈0, ( I ‘𝐴)〉 |
| 5 | 4 | sneqi 4590 | . 2 ⊢ {〈0, ( I ‘( I ‘𝐴))〉} = {〈0, ( I ‘𝐴)〉} |
| 6 | df-s1 14521 | . 2 ⊢ 〈“( I ‘𝐴)”〉 = {〈0, ( I ‘( I ‘𝐴))〉} | |
| 7 | df-s1 14521 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | 1 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 I cid 5517 ‘cfv 6486 0cc0 11028 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-s1 14521 |
| This theorem is referenced by: s1prc 14529 s1cli 14530 revs1 14689 |
| Copyright terms: Public domain | W3C validator |