| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-scott | Structured version Visualization version GIF version | ||
| Description: Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| Ref | Expression |
|---|---|
| df-scott | ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cscott 44226 | . 2 class Scott 𝐴 |
| 3 | vx | . . . . . . 7 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . . . 6 class 𝑥 |
| 5 | crnk 9782 | . . . . . 6 class rank | |
| 6 | 4, 5 | cfv 6536 | . . . . 5 class (rank‘𝑥) |
| 7 | vy | . . . . . . 7 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . 6 class 𝑦 |
| 9 | 8, 5 | cfv 6536 | . . . . 5 class (rank‘𝑦) |
| 10 | 6, 9 | wss 3931 | . . . 4 wff (rank‘𝑥) ⊆ (rank‘𝑦) |
| 11 | 10, 7, 1 | wral 3052 | . . 3 wff ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) |
| 12 | 11, 3, 1 | crab 3420 | . 2 class {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} |
| 13 | 2, 12 | wceq 1540 | 1 wff Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: scotteqd 44228 nfscott 44230 scottabf 44231 scottss 44234 scottex2 44236 scotteld 44237 scottelrankd 44238 |
| Copyright terms: Public domain | W3C validator |