|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-scott | Structured version Visualization version GIF version | ||
| Description: Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| df-scott | ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cscott 44254 | . 2 class Scott 𝐴 | 
| 3 | vx | . . . . . . 7 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . . . 6 class 𝑥 | 
| 5 | crnk 9803 | . . . . . 6 class rank | |
| 6 | 4, 5 | cfv 6561 | . . . . 5 class (rank‘𝑥) | 
| 7 | vy | . . . . . . 7 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . 6 class 𝑦 | 
| 9 | 8, 5 | cfv 6561 | . . . . 5 class (rank‘𝑦) | 
| 10 | 6, 9 | wss 3951 | . . . 4 wff (rank‘𝑥) ⊆ (rank‘𝑦) | 
| 11 | 10, 7, 1 | wral 3061 | . . 3 wff ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) | 
| 12 | 11, 3, 1 | crab 3436 | . 2 class {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | 
| 13 | 2, 12 | wceq 1540 | 1 wff Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: scotteqd 44256 nfscott 44258 scottabf 44259 scottss 44262 scottex2 44264 scotteld 44265 scottelrankd 44266 | 
| Copyright terms: Public domain | W3C validator |