![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottss | Structured version Visualization version GIF version |
Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottss | β’ Scott π΄ β π΄ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-scott 42995 | . 2 β’ Scott π΄ = {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} | |
2 | 1 | ssrab3 4081 | 1 β’ Scott π΄ β π΄ |
Colors of variables: wff setvar class |
Syntax hints: βwral 3062 β wss 3949 βcfv 6544 rankcrnk 9758 Scott cscott 42994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-scott 42995 |
This theorem is referenced by: elscottab 43003 |
Copyright terms: Public domain | W3C validator |