Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottss Structured version   Visualization version   GIF version

Theorem scottss 44234
Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
scottss Scott 𝐴𝐴

Proof of Theorem scottss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 44227 . 2 Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
21ssrab3 4062 1 Scott 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3052  wss 3931  cfv 6536  rankcrnk 9782  Scott cscott 44226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-ss 3948  df-scott 44227
This theorem is referenced by:  elscottab  44235
  Copyright terms: Public domain W3C validator