![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottss | Structured version Visualization version GIF version |
Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottss | ⊢ Scott 𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-scott 44205 | . 2 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
2 | 1 | ssrab3 4105 | 1 ⊢ Scott 𝐴 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3067 ⊆ wss 3976 ‘cfv 6573 rankcrnk 9832 Scott cscott 44204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-scott 44205 |
This theorem is referenced by: elscottab 44213 |
Copyright terms: Public domain | W3C validator |