Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottss | Structured version Visualization version GIF version |
Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottss | ⊢ Scott 𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-scott 41743 | . 2 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
2 | 1 | ssrab3 4011 | 1 ⊢ Scott 𝐴 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 rankcrnk 9452 Scott cscott 41742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-scott 41743 |
This theorem is referenced by: elscottab 41751 |
Copyright terms: Public domain | W3C validator |