Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottss Structured version   Visualization version   GIF version

Theorem scottss 43002
Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
scottss Scott 𝐴 βŠ† 𝐴

Proof of Theorem scottss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 42995 . 2 Scott 𝐴 = {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)}
21ssrab3 4081 1 Scott 𝐴 βŠ† 𝐴
Colors of variables: wff setvar class
Syntax hints:  βˆ€wral 3062   βŠ† wss 3949  β€˜cfv 6544  rankcrnk 9758  Scott cscott 42994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-scott 42995
This theorem is referenced by:  elscottab  43003
  Copyright terms: Public domain W3C validator