Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottss Structured version   Visualization version   GIF version

Theorem scottss 41750
Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
scottss Scott 𝐴𝐴

Proof of Theorem scottss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 41743 . 2 Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
21ssrab3 4011 1 Scott 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3063  wss 3883  cfv 6418  rankcrnk 9452  Scott cscott 41742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-scott 41743
This theorem is referenced by:  elscottab  41751
  Copyright terms: Public domain W3C validator