Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottabf Structured version   Visualization version   GIF version

Theorem scottabf 44209
Description: Value of the Scott operation at a class abstraction. Variant of scottab 44210 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
scottabf.1 𝑥𝜓
scottabf.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
scottabf Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem scottabf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 44205 . 2 Scott {𝑥𝜑} = {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)}
2 df-rab 3444 . 2 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧 ∣ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))}
3 eqabcb 2886 . . 3 ({𝑧 ∣ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ↔ ∀𝑧((𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)) ↔ 𝑧 ∈ {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}))
4 nfsab1 2725 . . . . . 6 𝑥 𝑧 ∈ {𝑥𝜑}
5 nfab1 2910 . . . . . . 7 𝑥{𝑥𝜑}
6 nfv 1913 . . . . . . 7 𝑥(rank‘𝑧) ⊆ (rank‘𝑤)
75, 6nfralw 3317 . . . . . 6 𝑥𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)
84, 7nfan 1898 . . . . 5 𝑥(𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))
9 vex 3492 . . . . 5 𝑧 ∈ V
10 abid 2721 . . . . . . 7 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
11 eleq1w 2827 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑥𝜑}))
1210, 11bitr3id 285 . . . . . 6 (𝑥 = 𝑧 → (𝜑𝑧 ∈ {𝑥𝜑}))
13 df-clab 2718 . . . . . . . . . . . 12 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
14 scottabf.1 . . . . . . . . . . . . 13 𝑥𝜓
15 scottabf.2 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜓))
1614, 15sbiev 2318 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝜑𝜓)
1713, 16bitr2i 276 . . . . . . . . . . 11 (𝜓𝑦 ∈ {𝑥𝜑})
18 eleq1w 2827 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑤 ∈ {𝑥𝜑}))
1917, 18bitrid 283 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝜓𝑤 ∈ {𝑥𝜑}))
2019adantl 481 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜓𝑤 ∈ {𝑥𝜑}))
21 simpl 482 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
2221fveq2d 6924 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑤) → (rank‘𝑥) = (rank‘𝑧))
23 simpr 484 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑦 = 𝑤)
2423fveq2d 6924 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑤) → (rank‘𝑦) = (rank‘𝑤))
2522, 24sseq12d 4042 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑤)))
2620, 25imbi12d 344 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑤 ∈ {𝑥𝜑} → (rank‘𝑧) ⊆ (rank‘𝑤))))
2726cbvaldvaw 2037 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑤(𝑤 ∈ {𝑥𝜑} → (rank‘𝑧) ⊆ (rank‘𝑤))))
28 df-ral 3068 . . . . . . 7 (∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤) ↔ ∀𝑤(𝑤 ∈ {𝑥𝜑} → (rank‘𝑧) ⊆ (rank‘𝑤)))
2927, 28bitr4di 289 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)))
3012, 29anbi12d 631 . . . . 5 (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))))
318, 9, 30elabf 3689 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ↔ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)))
3231bicomi 224 . . 3 ((𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)) ↔ 𝑧 ∈ {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
333, 32mpgbir 1797 . 2 {𝑧 ∣ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
341, 2, 333eqtri 2772 1 Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wnf 1781  [wsb 2064  wcel 2108  {cab 2717  wral 3067  {crab 3443  wss 3976  cfv 6573  rankcrnk 9832  Scott cscott 44204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-scott 44205
This theorem is referenced by:  scottab  44210  scottabes  44211
  Copyright terms: Public domain W3C validator