Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottabf Structured version   Visualization version   GIF version

Theorem scottabf 41531
Description: Value of the Scott operation at a class abstraction. Variant of scottab 41532 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
scottabf.1 𝑥𝜓
scottabf.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
scottabf Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem scottabf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 41527 . 2 Scott {𝑥𝜑} = {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)}
2 df-rab 3070 . 2 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧 ∣ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))}
3 abeq1 2870 . . 3 ({𝑧 ∣ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ↔ ∀𝑧((𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)) ↔ 𝑧 ∈ {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}))
4 nfsab1 2722 . . . . . 6 𝑥 𝑧 ∈ {𝑥𝜑}
5 nfab1 2906 . . . . . . 7 𝑥{𝑥𝜑}
6 nfv 1922 . . . . . . 7 𝑥(rank‘𝑧) ⊆ (rank‘𝑤)
75, 6nfralw 3147 . . . . . 6 𝑥𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)
84, 7nfan 1907 . . . . 5 𝑥(𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))
9 vex 3412 . . . . 5 𝑧 ∈ V
10 abid 2718 . . . . . . 7 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
11 eleq1w 2820 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑥𝜑}))
1210, 11bitr3id 288 . . . . . 6 (𝑥 = 𝑧 → (𝜑𝑧 ∈ {𝑥𝜑}))
13 df-clab 2715 . . . . . . . . . . . 12 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
14 scottabf.1 . . . . . . . . . . . . 13 𝑥𝜓
15 scottabf.2 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜓))
1614, 15sbiev 2313 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝜑𝜓)
1713, 16bitr2i 279 . . . . . . . . . . 11 (𝜓𝑦 ∈ {𝑥𝜑})
18 eleq1w 2820 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑤 ∈ {𝑥𝜑}))
1917, 18syl5bb 286 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝜓𝑤 ∈ {𝑥𝜑}))
2019adantl 485 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜓𝑤 ∈ {𝑥𝜑}))
21 simpl 486 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
2221fveq2d 6721 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑤) → (rank‘𝑥) = (rank‘𝑧))
23 simpr 488 . . . . . . . . . . 11 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑦 = 𝑤)
2423fveq2d 6721 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑤) → (rank‘𝑦) = (rank‘𝑤))
2522, 24sseq12d 3934 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑤)))
2620, 25imbi12d 348 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑤 ∈ {𝑥𝜑} → (rank‘𝑧) ⊆ (rank‘𝑤))))
2726cbvaldvaw 2046 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑤(𝑤 ∈ {𝑥𝜑} → (rank‘𝑧) ⊆ (rank‘𝑤))))
28 df-ral 3066 . . . . . . 7 (∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤) ↔ ∀𝑤(𝑤 ∈ {𝑥𝜑} → (rank‘𝑧) ⊆ (rank‘𝑤)))
2927, 28bitr4di 292 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)))
3012, 29anbi12d 634 . . . . 5 (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))))
318, 9, 30elabf 3584 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ↔ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)))
3231bicomi 227 . . 3 ((𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤)) ↔ 𝑧 ∈ {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
333, 32mpgbir 1807 . 2 {𝑧 ∣ (𝑧 ∈ {𝑥𝜑} ∧ ∀𝑤 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑤))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
341, 2, 333eqtri 2769 1 Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wnf 1791  [wsb 2070  wcel 2110  {cab 2714  wral 3061  {crab 3065  wss 3866  cfv 6380  rankcrnk 9379  Scott cscott 41526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-scott 41527
This theorem is referenced by:  scottab  41532  scottabes  41533
  Copyright terms: Public domain W3C validator