| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfscott | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| nfscott.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfscott | ⊢ Ⅎ𝑥Scott 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-scott 44227 | . 2 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 2 | nfscott.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥(rank‘𝑦) ⊆ (rank‘𝑧) | |
| 4 | 2, 3 | nfralw 3295 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧) |
| 5 | 4, 2 | nfrabw 3459 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| 6 | 1, 5 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥Scott 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2884 ∀wral 3052 {crab 3420 ⊆ wss 3931 ‘cfv 6536 rankcrnk 9782 Scott cscott 44226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-scott 44227 |
| This theorem is referenced by: nfcoll 44247 |
| Copyright terms: Public domain | W3C validator |