![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfscott | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
nfscott.1 | β’ β²π₯π΄ |
Ref | Expression |
---|---|
nfscott | β’ β²π₯Scott π΄ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-scott 42985 | . 2 β’ Scott π΄ = {π¦ β π΄ β£ βπ§ β π΄ (rankβπ¦) β (rankβπ§)} | |
2 | nfscott.1 | . . . 4 β’ β²π₯π΄ | |
3 | nfv 1917 | . . . 4 β’ β²π₯(rankβπ¦) β (rankβπ§) | |
4 | 2, 3 | nfralw 3308 | . . 3 β’ β²π₯βπ§ β π΄ (rankβπ¦) β (rankβπ§) |
5 | 4, 2 | nfrabw 3468 | . 2 β’ β²π₯{π¦ β π΄ β£ βπ§ β π΄ (rankβπ¦) β (rankβπ§)} |
6 | 1, 5 | nfcxfr 2901 | 1 β’ β²π₯Scott π΄ |
Colors of variables: wff setvar class |
Syntax hints: β²wnfc 2883 βwral 3061 {crab 3432 β wss 3948 βcfv 6543 rankcrnk 9757 Scott cscott 42984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-scott 42985 |
This theorem is referenced by: nfcoll 43005 |
Copyright terms: Public domain | W3C validator |