Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfscott Structured version   Visualization version   GIF version

Theorem nfscott 41746
Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
nfscott.1 𝑥𝐴
Assertion
Ref Expression
nfscott 𝑥Scott 𝐴

Proof of Theorem nfscott
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 41743 . 2 Scott 𝐴 = {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
2 nfscott.1 . . . 4 𝑥𝐴
3 nfv 1918 . . . 4 𝑥(rank‘𝑦) ⊆ (rank‘𝑧)
42, 3nfralw 3149 . . 3 𝑥𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)
54, 2nfrabw 3311 . 2 𝑥{𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
61, 5nfcxfr 2904 1 𝑥Scott 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2886  wral 3063  {crab 3067  wss 3883  cfv 6418  rankcrnk 9452  Scott cscott 41742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-scott 41743
This theorem is referenced by:  nfcoll  41763
  Copyright terms: Public domain W3C validator