Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfscott Structured version   Visualization version   GIF version

Theorem nfscott 44208
Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
nfscott.1 𝑥𝐴
Assertion
Ref Expression
nfscott 𝑥Scott 𝐴

Proof of Theorem nfscott
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 44205 . 2 Scott 𝐴 = {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
2 nfscott.1 . . . 4 𝑥𝐴
3 nfv 1913 . . . 4 𝑥(rank‘𝑦) ⊆ (rank‘𝑧)
42, 3nfralw 3317 . . 3 𝑥𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)
54, 2nfrabw 3483 . 2 𝑥{𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
61, 5nfcxfr 2906 1 𝑥Scott 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893  wral 3067  {crab 3443  wss 3976  cfv 6573  rankcrnk 9832  Scott cscott 44204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-scott 44205
This theorem is referenced by:  nfcoll  44225
  Copyright terms: Public domain W3C validator