Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfscott | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
nfscott.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfscott | ⊢ Ⅎ𝑥Scott 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-scott 41743 | . 2 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
2 | nfscott.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥(rank‘𝑦) ⊆ (rank‘𝑧) | |
4 | 2, 3 | nfralw 3149 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧) |
5 | 4, 2 | nfrabw 3311 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} |
6 | 1, 5 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥Scott 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ∀wral 3063 {crab 3067 ⊆ wss 3883 ‘cfv 6418 rankcrnk 9452 Scott cscott 41742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-scott 41743 |
This theorem is referenced by: nfcoll 41763 |
Copyright terms: Public domain | W3C validator |