| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfscott | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| nfscott.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfscott | ⊢ Ⅎ𝑥Scott 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-scott 44339 | . 2 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 2 | nfscott.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥(rank‘𝑦) ⊆ (rank‘𝑧) | |
| 4 | 2, 3 | nfralw 3279 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧) |
| 5 | 4, 2 | nfrabw 3432 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| 6 | 1, 5 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥Scott 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ∀wral 3047 {crab 3395 ⊆ wss 3897 ‘cfv 6481 rankcrnk 9656 Scott cscott 44338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-scott 44339 |
| This theorem is referenced by: nfcoll 44359 |
| Copyright terms: Public domain | W3C validator |