Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfscott Structured version   Visualization version   GIF version

Theorem nfscott 42988
Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
nfscott.1 β„²π‘₯𝐴
Assertion
Ref Expression
nfscott β„²π‘₯Scott 𝐴

Proof of Theorem nfscott
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scott 42985 . 2 Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† (rankβ€˜π‘§)}
2 nfscott.1 . . . 4 β„²π‘₯𝐴
3 nfv 1917 . . . 4 β„²π‘₯(rankβ€˜π‘¦) βŠ† (rankβ€˜π‘§)
42, 3nfralw 3308 . . 3 β„²π‘₯βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† (rankβ€˜π‘§)
54, 2nfrabw 3468 . 2 β„²π‘₯{𝑦 ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† (rankβ€˜π‘§)}
61, 5nfcxfr 2901 1 β„²π‘₯Scott 𝐴
Colors of variables: wff setvar class
Syntax hints:  β„²wnfc 2883  βˆ€wral 3061  {crab 3432   βŠ† wss 3948  β€˜cfv 6543  rankcrnk 9757  Scott cscott 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-scott 42985
This theorem is referenced by:  nfcoll  43005
  Copyright terms: Public domain W3C validator