![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfscott | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
nfscott.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfscott | ⊢ Ⅎ𝑥Scott 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-scott 43450 | . 2 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
2 | nfscott.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑥(rank‘𝑦) ⊆ (rank‘𝑧) | |
4 | 2, 3 | nfralw 3300 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧) |
5 | 4, 2 | nfrabw 3460 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} |
6 | 1, 5 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥Scott 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2875 ∀wral 3053 {crab 3424 ⊆ wss 3940 ‘cfv 6533 rankcrnk 9753 Scott cscott 43449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rab 3425 df-scott 43450 |
This theorem is referenced by: nfcoll 43470 |
Copyright terms: Public domain | W3C validator |