Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteqd Structured version   Visualization version   GIF version

Theorem scotteqd 44261
Description: Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Hypothesis
Ref Expression
scotteqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
scotteqd (𝜑 → Scott 𝐴 = Scott 𝐵)

Proof of Theorem scotteqd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scotteqd.1 . . 3 (𝜑𝐴 = 𝐵)
21adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐴 = 𝐵)
32raleqdv 3325 . . 3 ((𝜑𝑥𝐴) → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)))
41, 3rabeqbidva 3452 . 2 (𝜑 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐵 ∣ ∀𝑦𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)})
5 df-scott 44260 . 2 Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
6 df-scott 44260 . 2 Scott 𝐵 = {𝑥𝐵 ∣ ∀𝑦𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)}
74, 5, 63eqtr4g 2801 1 (𝜑 → Scott 𝐴 = Scott 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  {crab 3435  wss 3950  cfv 6560  rankcrnk 9804  Scott cscott 44259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-scott 44260
This theorem is referenced by:  scotteq  44262  dfcoll2  44276  colleq12d  44277
  Copyright terms: Public domain W3C validator