|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| scotteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| scotteqd | ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | scotteqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = 𝐵) | 
| 3 | 2 | raleqdv 3325 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦))) | 
| 4 | 1, 3 | rabeqbidva 3452 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)}) | 
| 5 | df-scott 44260 | . 2 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
| 6 | df-scott 44260 | . 2 ⊢ Scott 𝐵 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 ⊆ wss 3950 ‘cfv 6560 rankcrnk 9804 Scott cscott 44259 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-scott 44260 | 
| This theorem is referenced by: scotteq 44262 dfcoll2 44276 colleq12d 44277 | 
| Copyright terms: Public domain | W3C validator |