![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteqd | Structured version Visualization version GIF version |
Description: Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
Ref | Expression |
---|---|
scotteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
scotteqd | ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scotteqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = 𝐵) |
3 | 2 | raleqdv 3334 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦))) |
4 | 1, 3 | rabeqbidva 3460 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
5 | df-scott 44205 | . 2 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
6 | df-scott 44205 | . 2 ⊢ Scott 𝐵 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
7 | 4, 5, 6 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 ‘cfv 6573 rankcrnk 9832 Scott cscott 44204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-scott 44205 |
This theorem is referenced by: scotteq 44207 dfcoll2 44221 colleq12d 44222 |
Copyright terms: Public domain | W3C validator |