| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| Ref | Expression |
|---|---|
| scotteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| scotteqd | ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scotteqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = 𝐵) |
| 3 | 2 | raleqdv 3309 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 4 | 1, 3 | rabeqbidva 3437 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
| 5 | df-scott 44227 | . 2 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
| 6 | df-scott 44227 | . 2 ⊢ Scott 𝐵 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 ‘cfv 6536 rankcrnk 9782 Scott cscott 44226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-scott 44227 |
| This theorem is referenced by: scotteq 44229 dfcoll2 44243 colleq12d 44244 |
| Copyright terms: Public domain | W3C validator |