Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteqd | Structured version Visualization version GIF version |
Description: Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
Ref | Expression |
---|---|
scotteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
scotteqd | ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scotteqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = 𝐵) |
3 | 2 | raleqdv 3339 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦))) |
4 | 1, 3 | rabeqbidva 3411 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
5 | df-scott 41743 | . 2 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
6 | df-scott 41743 | . 2 ⊢ Scott 𝐵 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
7 | 4, 5, 6 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 ‘cfv 6418 rankcrnk 9452 Scott cscott 41742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-scott 41743 |
This theorem is referenced by: scotteq 41745 dfcoll2 41759 colleq12d 41760 |
Copyright terms: Public domain | W3C validator |