![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteqd | Structured version Visualization version GIF version |
Description: Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
Ref | Expression |
---|---|
scotteqd.1 | β’ (π β π΄ = π΅) |
Ref | Expression |
---|---|
scotteqd | β’ (π β Scott π΄ = Scott π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scotteqd.1 | . . 3 β’ (π β π΄ = π΅) | |
2 | 1 | adantr 481 | . . . 4 β’ ((π β§ π₯ β π΄) β π΄ = π΅) |
3 | 2 | raleqdv 3325 | . . 3 β’ ((π β§ π₯ β π΄) β (βπ¦ β π΄ (rankβπ₯) β (rankβπ¦) β βπ¦ β π΅ (rankβπ₯) β (rankβπ¦))) |
4 | 1, 3 | rabeqbidva 3448 | . 2 β’ (π β {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = {π₯ β π΅ β£ βπ¦ β π΅ (rankβπ₯) β (rankβπ¦)}) |
5 | df-scott 42985 | . 2 β’ Scott π΄ = {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} | |
6 | df-scott 42985 | . 2 β’ Scott π΅ = {π₯ β π΅ β£ βπ¦ β π΅ (rankβπ₯) β (rankβπ¦)} | |
7 | 4, 5, 6 | 3eqtr4g 2797 | 1 β’ (π β Scott π΄ = Scott π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β wss 3948 βcfv 6543 rankcrnk 9757 Scott cscott 42984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-scott 42985 |
This theorem is referenced by: scotteq 42987 dfcoll2 43001 colleq12d 43002 |
Copyright terms: Public domain | W3C validator |