Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteld Structured version   Visualization version   GIF version

Theorem scotteld 44279
Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scotteld.1 (𝜑 → ∃𝑥 𝑥𝐴)
Assertion
Ref Expression
scotteld (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scotteld
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scotteld.1 . . . . . 6 (𝜑 → ∃𝑥 𝑥𝐴)
2 n0 4298 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
31, 2sylibr 234 . . . . 5 (𝜑𝐴 ≠ ∅)
43neneqd 2933 . . . 4 (𝜑 → ¬ 𝐴 = ∅)
5 scott0 9774 . . . . 5 (𝐴 = ∅ ↔ {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
6 df-scott 44269 . . . . . 6 Scott 𝐴 = {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
76eqeq1i 2736 . . . . 5 (Scott 𝐴 = ∅ ↔ {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
85, 7bitr4i 278 . . . 4 (𝐴 = ∅ ↔ Scott 𝐴 = ∅)
94, 8sylnib 328 . . 3 (𝜑 → ¬ Scott 𝐴 = ∅)
109neqned 2935 . 2 (𝜑 → Scott 𝐴 ≠ ∅)
11 n0 4298 . 2 (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴)
1210, 11sylib 218 1 (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  {crab 3395  wss 3897  c0 4278  cfv 6476  rankcrnk 9651  Scott cscott 44268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-r1 9652  df-rank 9653  df-scott 44269
This theorem is referenced by:  cpcolld  44291
  Copyright terms: Public domain W3C validator