Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteld | Structured version Visualization version GIF version |
Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scotteld.1 | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
scotteld | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scotteld.1 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | n0 4280 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 1, 2 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) |
4 | 3 | neneqd 2948 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
5 | scott0 9644 | . . . . 5 ⊢ (𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
6 | df-scott 41854 | . . . . . 6 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
7 | 6 | eqeq1i 2743 | . . . . 5 ⊢ (Scott 𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
8 | 5, 7 | bitr4i 277 | . . . 4 ⊢ (𝐴 = ∅ ↔ Scott 𝐴 = ∅) |
9 | 4, 8 | sylnib 328 | . . 3 ⊢ (𝜑 → ¬ Scott 𝐴 = ∅) |
10 | 9 | neqned 2950 | . 2 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
11 | n0 4280 | . 2 ⊢ (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴) | |
12 | 10, 11 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 rankcrnk 9521 Scott cscott 41853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-rank 9523 df-scott 41854 |
This theorem is referenced by: cpcolld 41876 |
Copyright terms: Public domain | W3C validator |