| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteld | Structured version Visualization version GIF version | ||
| Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| scotteld.1 | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| scotteld | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scotteld.1 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | n0 4306 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| 4 | 3 | neneqd 2930 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
| 5 | scott0 9801 | . . . . 5 ⊢ (𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
| 6 | df-scott 44229 | . . . . . 6 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 7 | 6 | eqeq1i 2734 | . . . . 5 ⊢ (Scott 𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
| 8 | 5, 7 | bitr4i 278 | . . . 4 ⊢ (𝐴 = ∅ ↔ Scott 𝐴 = ∅) |
| 9 | 4, 8 | sylnib 328 | . . 3 ⊢ (𝜑 → ¬ Scott 𝐴 = ∅) |
| 10 | 9 | neqned 2932 | . 2 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
| 11 | n0 4306 | . 2 ⊢ (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴) | |
| 12 | 10, 11 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3396 ⊆ wss 3905 ∅c0 4286 ‘cfv 6486 rankcrnk 9678 Scott cscott 44228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 df-scott 44229 |
| This theorem is referenced by: cpcolld 44251 |
| Copyright terms: Public domain | W3C validator |