![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteld | Structured version Visualization version GIF version |
Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scotteld.1 | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
scotteld | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scotteld.1 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | n0 4347 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 1, 2 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) |
4 | 3 | neneqd 2935 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
5 | scott0 9920 | . . . . 5 ⊢ (𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
6 | df-scott 43945 | . . . . . 6 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
7 | 6 | eqeq1i 2731 | . . . . 5 ⊢ (Scott 𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
8 | 5, 7 | bitr4i 277 | . . . 4 ⊢ (𝐴 = ∅ ↔ Scott 𝐴 = ∅) |
9 | 4, 8 | sylnib 327 | . . 3 ⊢ (𝜑 → ¬ Scott 𝐴 = ∅) |
10 | 9 | neqned 2937 | . 2 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
11 | n0 4347 | . 2 ⊢ (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴) | |
12 | 10, 11 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 {crab 3420 ⊆ wss 3947 ∅c0 4323 ‘cfv 6544 rankcrnk 9797 Scott cscott 43944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-om 7867 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-r1 9798 df-rank 9799 df-scott 43945 |
This theorem is referenced by: cpcolld 43967 |
Copyright terms: Public domain | W3C validator |