Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scotteld Structured version   Visualization version   GIF version

Theorem scotteld 44242
Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scotteld.1 (𝜑 → ∃𝑥 𝑥𝐴)
Assertion
Ref Expression
scotteld (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scotteld
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scotteld.1 . . . . . 6 (𝜑 → ∃𝑥 𝑥𝐴)
2 n0 4319 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
31, 2sylibr 234 . . . . 5 (𝜑𝐴 ≠ ∅)
43neneqd 2931 . . . 4 (𝜑 → ¬ 𝐴 = ∅)
5 scott0 9846 . . . . 5 (𝐴 = ∅ ↔ {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
6 df-scott 44232 . . . . . 6 Scott 𝐴 = {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)}
76eqeq1i 2735 . . . . 5 (Scott 𝐴 = ∅ ↔ {𝑦𝐴 ∣ ∀𝑧𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
85, 7bitr4i 278 . . . 4 (𝐴 = ∅ ↔ Scott 𝐴 = ∅)
94, 8sylnib 328 . . 3 (𝜑 → ¬ Scott 𝐴 = ∅)
109neqned 2933 . 2 (𝜑 → Scott 𝐴 ≠ ∅)
11 n0 4319 . 2 (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴)
1210, 11sylib 218 1 (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  {crab 3408  wss 3917  c0 4299  cfv 6514  rankcrnk 9723  Scott cscott 44231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725  df-scott 44232
This theorem is referenced by:  cpcolld  44254
  Copyright terms: Public domain W3C validator