Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scotteld | Structured version Visualization version GIF version |
Description: The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scotteld.1 | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
scotteld | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scotteld.1 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | n0 4277 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 1, 2 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) |
4 | 3 | neneqd 2947 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
5 | scott0 9575 | . . . . 5 ⊢ (𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
6 | df-scott 41743 | . . . . . 6 ⊢ Scott 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
7 | 6 | eqeq1i 2743 | . . . . 5 ⊢ (Scott 𝐴 = ∅ ↔ {𝑦 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
8 | 5, 7 | bitr4i 277 | . . . 4 ⊢ (𝐴 = ∅ ↔ Scott 𝐴 = ∅) |
9 | 4, 8 | sylnib 327 | . . 3 ⊢ (𝜑 → ¬ Scott 𝐴 = ∅) |
10 | 9 | neqned 2949 | . 2 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
11 | n0 4277 | . 2 ⊢ (Scott 𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ Scott 𝐴) | |
12 | 10, 11 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 rankcrnk 9452 Scott cscott 41742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 df-scott 41743 |
This theorem is referenced by: cpcolld 41765 |
Copyright terms: Public domain | W3C validator |