Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottelrankd Structured version   Visualization version   GIF version

Theorem scottelrankd 44286
Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
scottelrankd.1 (𝜑𝐵 ∈ Scott 𝐴)
scottelrankd.2 (𝜑𝐶 ∈ Scott 𝐴)
Assertion
Ref Expression
scottelrankd (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶))

Proof of Theorem scottelrankd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑦 = 𝐶 → (rank‘𝑦) = (rank‘𝐶))
21sseq2d 3967 . 2 (𝑦 = 𝐶 → ((rank‘𝐵) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝐶)))
3 scottelrankd.1 . . . . 5 (𝜑𝐵 ∈ Scott 𝐴)
4 df-scott 44275 . . . . 5 Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
53, 4eleqtrdi 2841 . . . 4 (𝜑𝐵 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
6 fveq2 6822 . . . . . . 7 (𝑥 = 𝐵 → (rank‘𝑥) = (rank‘𝐵))
76sseq1d 3966 . . . . . 6 (𝑥 = 𝐵 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝑦)))
87ralbidv 3155 . . . . 5 (𝑥 = 𝐵 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)))
98elrab 3647 . . . 4 (𝐵 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝐵𝐴 ∧ ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)))
105, 9sylib 218 . . 3 (𝜑 → (𝐵𝐴 ∧ ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)))
1110simprd 495 . 2 (𝜑 → ∀𝑦𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))
12 scottelrankd.2 . . . 4 (𝜑𝐶 ∈ Scott 𝐴)
1312, 4eleqtrdi 2841 . . 3 (𝜑𝐶 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
14 elrabi 3643 . . 3 (𝐶 ∈ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} → 𝐶𝐴)
1513, 14syl 17 . 2 (𝜑𝐶𝐴)
162, 11, 15rspcdva 3578 1 (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3902  cfv 6481  rankcrnk 9656  Scott cscott 44274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-scott 44275
This theorem is referenced by:  scottrankd  44287
  Copyright terms: Public domain W3C validator