Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottelrankd | Structured version Visualization version GIF version |
Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottelrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
scottelrankd.2 | ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) |
Ref | Expression |
---|---|
scottelrankd | ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝑦 = 𝐶 → (rank‘𝑦) = (rank‘𝐶)) | |
2 | 1 | sseq2d 3949 | . 2 ⊢ (𝑦 = 𝐶 → ((rank‘𝐵) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝐶))) |
3 | scottelrankd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
4 | df-scott 41743 | . . . . 5 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
5 | 3, 4 | eleqtrdi 2849 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
6 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (rank‘𝑥) = (rank‘𝐵)) | |
7 | 6 | sseq1d 3948 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝑦))) |
8 | 7 | ralbidv 3120 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
9 | 8 | elrab 3617 | . . . 4 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
10 | 5, 9 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
11 | 10 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)) |
12 | scottelrankd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) | |
13 | 12, 4 | eleqtrdi 2849 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
14 | elrabi 3611 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} → 𝐶 ∈ 𝐴) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
16 | 2, 11, 15 | rspcdva 3554 | 1 ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 ‘cfv 6418 rankcrnk 9452 Scott cscott 41742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-scott 41743 |
This theorem is referenced by: scottrankd 41755 |
Copyright terms: Public domain | W3C validator |