Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottelrankd Structured version   Visualization version   GIF version

Theorem scottelrankd 42619
Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
scottelrankd.1 (πœ‘ β†’ 𝐡 ∈ Scott 𝐴)
scottelrankd.2 (πœ‘ β†’ 𝐢 ∈ Scott 𝐴)
Assertion
Ref Expression
scottelrankd (πœ‘ β†’ (rankβ€˜π΅) βŠ† (rankβ€˜πΆ))

Proof of Theorem scottelrankd
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . 3 (𝑦 = 𝐢 β†’ (rankβ€˜π‘¦) = (rankβ€˜πΆ))
21sseq2d 3980 . 2 (𝑦 = 𝐢 β†’ ((rankβ€˜π΅) βŠ† (rankβ€˜π‘¦) ↔ (rankβ€˜π΅) βŠ† (rankβ€˜πΆ)))
3 scottelrankd.1 . . . . 5 (πœ‘ β†’ 𝐡 ∈ Scott 𝐴)
4 df-scott 42608 . . . . 5 Scott 𝐴 = {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)}
53, 4eleqtrdi 2844 . . . 4 (πœ‘ β†’ 𝐡 ∈ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)})
6 fveq2 6846 . . . . . . 7 (π‘₯ = 𝐡 β†’ (rankβ€˜π‘₯) = (rankβ€˜π΅))
76sseq1d 3979 . . . . . 6 (π‘₯ = 𝐡 β†’ ((rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ (rankβ€˜π΅) βŠ† (rankβ€˜π‘¦)))
87ralbidv 3171 . . . . 5 (π‘₯ = 𝐡 β†’ (βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π΅) βŠ† (rankβ€˜π‘¦)))
98elrab 3649 . . . 4 (𝐡 ∈ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} ↔ (𝐡 ∈ 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π΅) βŠ† (rankβ€˜π‘¦)))
105, 9sylib 217 . . 3 (πœ‘ β†’ (𝐡 ∈ 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π΅) βŠ† (rankβ€˜π‘¦)))
1110simprd 497 . 2 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π΅) βŠ† (rankβ€˜π‘¦))
12 scottelrankd.2 . . . 4 (πœ‘ β†’ 𝐢 ∈ Scott 𝐴)
1312, 4eleqtrdi 2844 . . 3 (πœ‘ β†’ 𝐢 ∈ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)})
14 elrabi 3643 . . 3 (𝐢 ∈ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} β†’ 𝐢 ∈ 𝐴)
1513, 14syl 17 . 2 (πœ‘ β†’ 𝐢 ∈ 𝐴)
162, 11, 15rspcdva 3584 1 (πœ‘ β†’ (rankβ€˜π΅) βŠ† (rankβ€˜πΆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  {crab 3406   βŠ† wss 3914  β€˜cfv 6500  rankcrnk 9707  Scott cscott 42607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508  df-scott 42608
This theorem is referenced by:  scottrankd  42620
  Copyright terms: Public domain W3C validator