![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottelrankd | Structured version Visualization version GIF version |
Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottelrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
scottelrankd.2 | ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) |
Ref | Expression |
---|---|
scottelrankd | ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑦 = 𝐶 → (rank‘𝑦) = (rank‘𝐶)) | |
2 | 1 | sseq2d 4041 | . 2 ⊢ (𝑦 = 𝐶 → ((rank‘𝐵) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝐶))) |
3 | scottelrankd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
4 | df-scott 44205 | . . . . 5 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
5 | 3, 4 | eleqtrdi 2854 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
6 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (rank‘𝑥) = (rank‘𝐵)) | |
7 | 6 | sseq1d 4040 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝑦))) |
8 | 7 | ralbidv 3184 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
9 | 8 | elrab 3708 | . . . 4 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
10 | 5, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
11 | 10 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)) |
12 | scottelrankd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) | |
13 | 12, 4 | eleqtrdi 2854 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
14 | elrabi 3703 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} → 𝐶 ∈ 𝐴) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
16 | 2, 11, 15 | rspcdva 3636 | 1 ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 ‘cfv 6573 rankcrnk 9832 Scott cscott 44204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-scott 44205 |
This theorem is referenced by: scottrankd 44217 |
Copyright terms: Public domain | W3C validator |