| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottelrankd | Structured version Visualization version GIF version | ||
| Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| scottelrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
| scottelrankd.2 | ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) |
| Ref | Expression |
|---|---|
| scottelrankd | ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6865 | . . 3 ⊢ (𝑦 = 𝐶 → (rank‘𝑦) = (rank‘𝐶)) | |
| 2 | 1 | sseq2d 3987 | . 2 ⊢ (𝑦 = 𝐶 → ((rank‘𝐵) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝐶))) |
| 3 | scottelrankd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
| 4 | df-scott 44197 | . . . . 5 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
| 5 | 3, 4 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
| 6 | fveq2 6865 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (rank‘𝑥) = (rank‘𝐵)) | |
| 7 | 6 | sseq1d 3986 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 8 | 7 | ralbidv 3158 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 9 | 8 | elrab 3667 | . . . 4 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 10 | 5, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 11 | 10 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)) |
| 12 | scottelrankd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) | |
| 13 | 12, 4 | eleqtrdi 2839 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
| 14 | elrabi 3662 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} → 𝐶 ∈ 𝐴) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 16 | 2, 11, 15 | rspcdva 3598 | 1 ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 {crab 3411 ⊆ wss 3922 ‘cfv 6519 rankcrnk 9734 Scott cscott 44196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-scott 44197 |
| This theorem is referenced by: scottrankd 44209 |
| Copyright terms: Public domain | W3C validator |