| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottelrankd | Structured version Visualization version GIF version | ||
| Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| scottelrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
| scottelrankd.2 | ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) |
| Ref | Expression |
|---|---|
| scottelrankd | ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6887 | . . 3 ⊢ (𝑦 = 𝐶 → (rank‘𝑦) = (rank‘𝐶)) | |
| 2 | 1 | sseq2d 3998 | . 2 ⊢ (𝑦 = 𝐶 → ((rank‘𝐵) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝐶))) |
| 3 | scottelrankd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
| 4 | df-scott 44200 | . . . . 5 ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | |
| 5 | 3, 4 | eleqtrdi 2843 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
| 6 | fveq2 6887 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (rank‘𝑥) = (rank‘𝐵)) | |
| 7 | 6 | sseq1d 3997 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 8 | 7 | ralbidv 3165 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 9 | 8 | elrab 3676 | . . . 4 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 10 | 5, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦))) |
| 11 | 10 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (rank‘𝐵) ⊆ (rank‘𝑦)) |
| 12 | scottelrankd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) | |
| 13 | 12, 4 | eleqtrdi 2843 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}) |
| 14 | elrabi 3671 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} → 𝐶 ∈ 𝐴) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 16 | 2, 11, 15 | rspcdva 3607 | 1 ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3420 ⊆ wss 3933 ‘cfv 6542 rankcrnk 9786 Scott cscott 44199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-scott 44200 |
| This theorem is referenced by: scottrankd 44212 |
| Copyright terms: Public domain | W3C validator |