Detailed syntax breakdown of Definition df-seqom
Step | Hyp | Ref
| Expression |
1 | | cF |
. . 3
class 𝐹 |
2 | | cI |
. . 3
class 𝐼 |
3 | 1, 2 | cseqom 8278 |
. 2
class
seqω(𝐹, 𝐼) |
4 | | vi |
. . . . 5
setvar 𝑖 |
5 | | vv |
. . . . 5
setvar 𝑣 |
6 | | com 7712 |
. . . . 5
class
ω |
7 | | cvv 3432 |
. . . . 5
class
V |
8 | 4 | cv 1538 |
. . . . . . 7
class 𝑖 |
9 | 8 | csuc 6268 |
. . . . . 6
class suc 𝑖 |
10 | 5 | cv 1538 |
. . . . . . 7
class 𝑣 |
11 | 8, 10, 1 | co 7275 |
. . . . . 6
class (𝑖𝐹𝑣) |
12 | 9, 11 | cop 4567 |
. . . . 5
class 〈suc
𝑖, (𝑖𝐹𝑣)〉 |
13 | 4, 5, 6, 7, 12 | cmpo 7277 |
. . . 4
class (𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉) |
14 | | c0 4256 |
. . . . 5
class
∅ |
15 | | cid 5488 |
. . . . . 6
class
I |
16 | 2, 15 | cfv 6433 |
. . . . 5
class ( I
‘𝐼) |
17 | 14, 16 | cop 4567 |
. . . 4
class
〈∅, ( I ‘𝐼)〉 |
18 | 13, 17 | crdg 8240 |
. . 3
class
rec((𝑖 ∈
ω, 𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
19 | 18, 6 | cima 5592 |
. 2
class
(rec((𝑖 ∈
ω, 𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “
ω) |
20 | 3, 19 | wceq 1539 |
1
wff
seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “
ω) |