Detailed syntax breakdown of Definition df-seqom
| Step | Hyp | Ref
| Expression |
| 1 | | cF |
. . 3
class 𝐹 |
| 2 | | cI |
. . 3
class 𝐼 |
| 3 | 1, 2 | cseqom 8487 |
. 2
class
seqω(𝐹, 𝐼) |
| 4 | | vi |
. . . . 5
setvar 𝑖 |
| 5 | | vv |
. . . . 5
setvar 𝑣 |
| 6 | | com 7887 |
. . . . 5
class
ω |
| 7 | | cvv 3480 |
. . . . 5
class
V |
| 8 | 4 | cv 1539 |
. . . . . . 7
class 𝑖 |
| 9 | 8 | csuc 6386 |
. . . . . 6
class suc 𝑖 |
| 10 | 5 | cv 1539 |
. . . . . . 7
class 𝑣 |
| 11 | 8, 10, 1 | co 7431 |
. . . . . 6
class (𝑖𝐹𝑣) |
| 12 | 9, 11 | cop 4632 |
. . . . 5
class 〈suc
𝑖, (𝑖𝐹𝑣)〉 |
| 13 | 4, 5, 6, 7, 12 | cmpo 7433 |
. . . 4
class (𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉) |
| 14 | | c0 4333 |
. . . . 5
class
∅ |
| 15 | | cid 5577 |
. . . . . 6
class
I |
| 16 | 2, 15 | cfv 6561 |
. . . . 5
class ( I
‘𝐼) |
| 17 | 14, 16 | cop 4632 |
. . . 4
class
〈∅, ( I ‘𝐼)〉 |
| 18 | 13, 17 | crdg 8449 |
. . 3
class
rec((𝑖 ∈
ω, 𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
| 19 | 18, 6 | cima 5688 |
. 2
class
(rec((𝑖 ∈
ω, 𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “
ω) |
| 20 | 3, 19 | wceq 1540 |
1
wff
seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “
ω) |