MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqom0g Structured version   Visualization version   GIF version

Theorem seqom0g 8287
Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by AV, 17-Sep-2021.)
Hypothesis
Ref Expression
seqom.a 𝐺 = seqω(𝐹, 𝐼)
Assertion
Ref Expression
seqom0g (𝐼𝑉 → (𝐺‘∅) = 𝐼)

Proof of Theorem seqom0g
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqom.a . . . . 5 𝐺 = seqω(𝐹, 𝐼)
2 df-seqom 8279 . . . . 5 seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
31, 2eqtri 2766 . . . 4 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
43fveq1i 6775 . . 3 (𝐺‘∅) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘∅)
5 seqomlem0 8280 . . . 4 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
65seqomlem3 8283 . . 3 ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘∅) = ( I ‘𝐼)
74, 6eqtri 2766 . 2 (𝐺‘∅) = ( I ‘𝐼)
8 fvi 6844 . 2 (𝐼𝑉 → ( I ‘𝐼) = 𝐼)
97, 8eqtrid 2790 1 (𝐼𝑉 → (𝐺‘∅) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cop 4567   I cid 5488  cima 5592  suc csuc 6268  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  reccrdg 8240  seqωcseqom 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279
This theorem is referenced by:  cantnfvalf  9423  cantnfval2  9427  cantnflt  9430  cantnff  9432  cantnf0  9433  cantnfp1lem3  9438  cantnf  9451  cnfcom  9458  fseqenlem1  9780  fin23lem14  10089  fin23lem16  10091
  Copyright terms: Public domain W3C validator