| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqom0g | Structured version Visualization version GIF version | ||
| Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by AV, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| seqom.a | ⊢ 𝐺 = seqω(𝐹, 𝐼) |
| Ref | Expression |
|---|---|
| seqom0g | ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqom.a | . . . . 5 ⊢ 𝐺 = seqω(𝐹, 𝐼) | |
| 2 | df-seqom 8362 | . . . . 5 ⊢ seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) | |
| 3 | 1, 2 | eqtri 2754 | . . . 4 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) |
| 4 | 3 | fveq1i 6818 | . . 3 ⊢ (𝐺‘∅) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘∅) |
| 5 | seqomlem0 8363 | . . . 4 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) | |
| 6 | 5 | seqomlem3 8366 | . . 3 ⊢ ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘∅) = ( I ‘𝐼) |
| 7 | 4, 6 | eqtri 2754 | . 2 ⊢ (𝐺‘∅) = ( I ‘𝐼) |
| 8 | fvi 6893 | . 2 ⊢ (𝐼 ∈ 𝑉 → ( I ‘𝐼) = 𝐼) | |
| 9 | 7, 8 | eqtrid 2778 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 〈cop 4577 I cid 5505 “ cima 5614 suc csuc 6303 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ωcom 7791 reccrdg 8323 seqωcseqom 8361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seqom 8362 |
| This theorem is referenced by: cantnfvalf 9550 cantnfval2 9554 cantnflt 9557 cantnff 9559 cantnf0 9560 cantnfp1lem3 9565 cantnf 9578 cnfcom 9585 fseqenlem1 9910 fin23lem14 10219 fin23lem16 10221 |
| Copyright terms: Public domain | W3C validator |