![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqom0g | Structured version Visualization version GIF version |
Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by AV, 17-Sep-2021.) |
Ref | Expression |
---|---|
seqom.a | ⊢ 𝐺 = seqω(𝐹, 𝐼) |
Ref | Expression |
---|---|
seqom0g | ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqom.a | . . . . 5 ⊢ 𝐺 = seqω(𝐹, 𝐼) | |
2 | df-seqom 8475 | . . . . 5 ⊢ seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω) | |
3 | 1, 2 | eqtri 2756 | . . . 4 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω) |
4 | 3 | fveq1i 6903 | . . 3 ⊢ (𝐺‘∅) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘∅) |
5 | seqomlem0 8476 | . . . 4 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩) | |
6 | 5 | seqomlem3 8479 | . . 3 ⊢ ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘∅) = ( I ‘𝐼) |
7 | 4, 6 | eqtri 2756 | . 2 ⊢ (𝐺‘∅) = ( I ‘𝐼) |
8 | fvi 6979 | . 2 ⊢ (𝐼 ∈ 𝑉 → ( I ‘𝐼) = 𝐼) | |
9 | 7, 8 | eqtrid 2780 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∅c0 4326 ⟨cop 4638 I cid 5579 “ cima 5685 suc csuc 6376 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 ωcom 7876 reccrdg 8436 seqωcseqom 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-seqom 8475 |
This theorem is referenced by: cantnfvalf 9696 cantnfval2 9700 cantnflt 9703 cantnff 9705 cantnf0 9706 cantnfp1lem3 9711 cantnf 9724 cnfcom 9731 fseqenlem1 10055 fin23lem14 10364 fin23lem16 10366 |
Copyright terms: Public domain | W3C validator |