![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqom0g | Structured version Visualization version GIF version |
Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by AV, 17-Sep-2021.) |
Ref | Expression |
---|---|
seqom.a | ⊢ 𝐺 = seqω(𝐹, 𝐼) |
Ref | Expression |
---|---|
seqom0g | ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqom.a | . . . . 5 ⊢ 𝐺 = seqω(𝐹, 𝐼) | |
2 | df-seqom 8445 | . . . . 5 ⊢ seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) | |
3 | 1, 2 | eqtri 2761 | . . . 4 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) |
4 | 3 | fveq1i 6890 | . . 3 ⊢ (𝐺‘∅) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘∅) |
5 | seqomlem0 8446 | . . . 4 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) | |
6 | 5 | seqomlem3 8449 | . . 3 ⊢ ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘∅) = ( I ‘𝐼) |
7 | 4, 6 | eqtri 2761 | . 2 ⊢ (𝐺‘∅) = ( I ‘𝐼) |
8 | fvi 6965 | . 2 ⊢ (𝐼 ∈ 𝑉 → ( I ‘𝐼) = 𝐼) | |
9 | 7, 8 | eqtrid 2785 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4322 〈cop 4634 I cid 5573 “ cima 5679 suc csuc 6364 ‘cfv 6541 (class class class)co 7406 ∈ cmpo 7408 ωcom 7852 reccrdg 8406 seqωcseqom 8444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-seqom 8445 |
This theorem is referenced by: cantnfvalf 9657 cantnfval2 9661 cantnflt 9664 cantnff 9666 cantnf0 9667 cantnfp1lem3 9672 cantnf 9685 cnfcom 9692 fseqenlem1 10016 fin23lem14 10325 fin23lem16 10327 |
Copyright terms: Public domain | W3C validator |