Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqom0g | Structured version Visualization version GIF version |
Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by AV, 17-Sep-2021.) |
Ref | Expression |
---|---|
seqom.a | ⊢ 𝐺 = seqω(𝐹, 𝐼) |
Ref | Expression |
---|---|
seqom0g | ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqom.a | . . . . 5 ⊢ 𝐺 = seqω(𝐹, 𝐼) | |
2 | df-seqom 8279 | . . . . 5 ⊢ seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) | |
3 | 1, 2 | eqtri 2766 | . . . 4 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) |
4 | 3 | fveq1i 6775 | . . 3 ⊢ (𝐺‘∅) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘∅) |
5 | seqomlem0 8280 | . . . 4 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) | |
6 | 5 | seqomlem3 8283 | . . 3 ⊢ ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘∅) = ( I ‘𝐼) |
7 | 4, 6 | eqtri 2766 | . 2 ⊢ (𝐺‘∅) = ( I ‘𝐼) |
8 | fvi 6844 | . 2 ⊢ (𝐼 ∈ 𝑉 → ( I ‘𝐼) = 𝐼) | |
9 | 7, 8 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 〈cop 4567 I cid 5488 “ cima 5592 suc csuc 6268 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ωcom 7712 reccrdg 8240 seqωcseqom 8278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seqom 8279 |
This theorem is referenced by: cantnfvalf 9423 cantnfval2 9427 cantnflt 9430 cantnff 9432 cantnf0 9433 cantnfp1lem3 9438 cantnf 9451 cnfcom 9458 fseqenlem1 9780 fin23lem14 10089 fin23lem16 10091 |
Copyright terms: Public domain | W3C validator |