MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomeq12 Structured version   Visualization version   GIF version

Theorem seqomeq12 8494
Description: Equality theorem for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))

Proof of Theorem seqomeq12
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7437 . . . . . 6 (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏))
21opeq2d 4880 . . . . 5 (𝐴 = 𝐵 → ⟨suc 𝑎, (𝑎𝐴𝑏)⟩ = ⟨suc 𝑎, (𝑎𝐵𝑏)⟩)
32mpoeq3dv 7512 . . . 4 (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩))
4 fveq2 6906 . . . . 5 (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷))
54opeq2d 4880 . . . 4 (𝐶 = 𝐷 → ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩)
6 rdgeq12 8453 . . . 4 (((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩) ∧ ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
73, 5, 6syl2an 596 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
87imaeq1d 6077 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω))
9 df-seqom 8488 . 2 seqω(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω)
10 df-seqom 8488 . 2 seqω(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω)
118, 9, 103eqtr4g 2802 1 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  Vcvv 3480  c0 4333  cop 4632   I cid 5577  cima 5688  suc csuc 6386  cfv 6561  (class class class)co 7431  cmpo 7433  ωcom 7887  reccrdg 8449  seqωcseqom 8487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-xp 5691  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488
This theorem is referenced by:  cantnffval  9703  cantnfval  9708  cantnfres  9717  cnfcomlem  9739  cnfcom2  9742  fin23lem33  10385
  Copyright terms: Public domain W3C validator