MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomeq12 Structured version   Visualization version   GIF version

Theorem seqomeq12 8399
Description: Equality theorem for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))

Proof of Theorem seqomeq12
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7375 . . . . . 6 (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏))
21opeq2d 4840 . . . . 5 (𝐴 = 𝐵 → ⟨suc 𝑎, (𝑎𝐴𝑏)⟩ = ⟨suc 𝑎, (𝑎𝐵𝑏)⟩)
32mpoeq3dv 7448 . . . 4 (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩))
4 fveq2 6840 . . . . 5 (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷))
54opeq2d 4840 . . . 4 (𝐶 = 𝐷 → ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩)
6 rdgeq12 8358 . . . 4 (((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩) ∧ ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
73, 5, 6syl2an 596 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
87imaeq1d 6019 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω))
9 df-seqom 8393 . 2 seqω(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω)
10 df-seqom 8393 . 2 seqω(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω)
118, 9, 103eqtr4g 2789 1 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  Vcvv 3444  c0 4292  cop 4591   I cid 5525  cima 5634  suc csuc 6322  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  reccrdg 8354  seqωcseqom 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393
This theorem is referenced by:  cantnffval  9592  cantnfval  9597  cantnfres  9606  cnfcomlem  9628  cnfcom2  9631  fin23lem33  10274
  Copyright terms: Public domain W3C validator