MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomeq12 Structured version   Visualization version   GIF version

Theorem seqomeq12 8493
Description: Equality theorem for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))

Proof of Theorem seqomeq12
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7437 . . . . . 6 (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏))
21opeq2d 4885 . . . . 5 (𝐴 = 𝐵 → ⟨suc 𝑎, (𝑎𝐴𝑏)⟩ = ⟨suc 𝑎, (𝑎𝐵𝑏)⟩)
32mpoeq3dv 7512 . . . 4 (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩))
4 fveq2 6907 . . . . 5 (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷))
54opeq2d 4885 . . . 4 (𝐶 = 𝐷 → ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩)
6 rdgeq12 8452 . . . 4 (((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩) ∧ ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
73, 5, 6syl2an 596 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
87imaeq1d 6079 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω))
9 df-seqom 8487 . 2 seqω(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω)
10 df-seqom 8487 . 2 seqω(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω)
118, 9, 103eqtr4g 2800 1 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  Vcvv 3478  c0 4339  cop 4637   I cid 5582  cima 5692  suc csuc 6388  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  reccrdg 8448  seqωcseqom 8486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seqom 8487
This theorem is referenced by:  cantnffval  9701  cantnfval  9706  cantnfres  9715  cnfcomlem  9737  cnfcom2  9740  fin23lem33  10383
  Copyright terms: Public domain W3C validator