MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomeq12 Structured version   Visualization version   GIF version

Theorem seqomeq12 8425
Description: Equality theorem for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))

Proof of Theorem seqomeq12
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7396 . . . . . 6 (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏))
21opeq2d 4847 . . . . 5 (𝐴 = 𝐵 → ⟨suc 𝑎, (𝑎𝐴𝑏)⟩ = ⟨suc 𝑎, (𝑎𝐵𝑏)⟩)
32mpoeq3dv 7471 . . . 4 (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩))
4 fveq2 6861 . . . . 5 (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷))
54opeq2d 4847 . . . 4 (𝐶 = 𝐷 → ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩)
6 rdgeq12 8384 . . . 4 (((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩) ∧ ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
73, 5, 6syl2an 596 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
87imaeq1d 6033 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω))
9 df-seqom 8419 . 2 seqω(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω)
10 df-seqom 8419 . 2 seqω(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω)
118, 9, 103eqtr4g 2790 1 ((𝐴 = 𝐵𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  Vcvv 3450  c0 4299  cop 4598   I cid 5535  cima 5644  suc csuc 6337  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  reccrdg 8380  seqωcseqom 8418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419
This theorem is referenced by:  cantnffval  9623  cantnfval  9628  cantnfres  9637  cnfcomlem  9659  cnfcom2  9662  fin23lem33  10305
  Copyright terms: Public domain W3C validator