![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqomeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7454 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏)) | |
2 | 1 | opeq2d 4904 | . . . . 5 ⊢ (𝐴 = 𝐵 → 〈suc 𝑎, (𝑎𝐴𝑏)〉 = 〈suc 𝑎, (𝑎𝐵𝑏)〉) |
3 | 2 | mpoeq3dv 7529 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉)) |
4 | fveq2 6920 | . . . . 5 ⊢ (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷)) | |
5 | 4 | opeq2d 4904 | . . . 4 ⊢ (𝐶 = 𝐷 → 〈∅, ( I ‘𝐶)〉 = 〈∅, ( I ‘𝐷)〉) |
6 | rdgeq12 8469 | . . . 4 ⊢ (((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉) ∧ 〈∅, ( I ‘𝐶)〉 = 〈∅, ( I ‘𝐷)〉) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉)) | |
7 | 3, 5, 6 | syl2an 595 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉)) |
8 | 7 | imaeq1d 6088 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉) “ ω)) |
9 | df-seqom 8504 | . 2 ⊢ seqω(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) “ ω) | |
10 | df-seqom 8504 | . 2 ⊢ seqω(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉) “ ω) | |
11 | 8, 9, 10 | 3eqtr4g 2805 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Vcvv 3488 ∅c0 4352 〈cop 4654 I cid 5592 “ cima 5703 suc csuc 6397 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 reccrdg 8465 seqωcseqom 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seqom 8504 |
This theorem is referenced by: cantnffval 9732 cantnfval 9737 cantnfres 9746 cnfcomlem 9768 cnfcom2 9771 fin23lem33 10414 |
Copyright terms: Public domain | W3C validator |