MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rdg Structured version   Visualization version   GIF version

Definition df-rdg 8422
Description: Define a recursive definition generator on On (the class of ordinal numbers) with characteristic function 𝐹 and initial value 𝐼. This combines functions 𝐹 in tfr1 8409 and 𝐺 in tz7.44-1 8418 into one definition. This rather amazing operation allows to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our rec operation (especially when df-recs 8383 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple, as in for example oav 8521, from which we prove the recursive textbook definition as Theorems oa0 8526, oasuc 8534, and oalim 8542 (with the help of Theorems rdg0 8433, rdgsuc 8436, and rdglim2a 8445). We can also restrict the rec operation to define otherwise recursive functions on the natural numbers ω; see fr0g 8448 and frsuc 8449. Our rec operation apparently does not appear in published literature, although closely related is Definition 25.2 of [Quine] p. 177, which he uses to "turn...a recursion into a genuine or direct definition" (p. 174). Note that the if operations (see df-if 4501) select cases based on whether the domain of 𝑔 is zero, a successor, or a limit ordinal.

An important use of this definition is in the recursive sequence generator df-seq 14018 on the natural numbers (as a subset of the complex numbers), allowing us to define, with direct definitions, recursive infinite sequences such as the factorial function df-fac 14290 and integer powers df-exp 14078.

Note: We introduce rec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)

Assertion
Ref Expression
df-rdg rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐼

Detailed syntax breakdown of Definition df-rdg
StepHypRef Expression
1 cF . . 3 class 𝐹
2 cI . . 3 class 𝐼
31, 2crdg 8421 . 2 class rec(𝐹, 𝐼)
4 vg . . . 4 setvar 𝑔
5 cvv 3459 . . . 4 class V
64cv 1539 . . . . . 6 class 𝑔
7 c0 4308 . . . . . 6 class
86, 7wceq 1540 . . . . 5 wff 𝑔 = ∅
96cdm 5654 . . . . . . 7 class dom 𝑔
109wlim 6353 . . . . . 6 wff Lim dom 𝑔
116crn 5655 . . . . . . 7 class ran 𝑔
1211cuni 4883 . . . . . 6 class ran 𝑔
139cuni 4883 . . . . . . . 8 class dom 𝑔
1413, 6cfv 6530 . . . . . . 7 class (𝑔 dom 𝑔)
1514, 1cfv 6530 . . . . . 6 class (𝐹‘(𝑔 dom 𝑔))
1610, 12, 15cif 4500 . . . . 5 class if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))
178, 2, 16cif 4500 . . . 4 class if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))
184, 5, 17cmpt 5201 . . 3 class (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
1918crecs 8382 . 2 class recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
203, 19wceq 1540 1 wff rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
Colors of variables: wff setvar class
This definition is referenced by:  rdgeq1  8423  rdgeq2  8424  nfrdg  8426  rdgfun  8428  rdgdmlim  8429  rdgfnon  8430  rdgvalg  8431  rdgval  8432  rdgseg  8434  rdg0n  8446  dfrdg2  35759  csbrdgg  37293
  Copyright terms: Public domain W3C validator