MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomsuc Structured version   Visualization version   GIF version

Theorem seqomsuc 7709
Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqom.a 𝐺 = seq𝜔(𝐹, 𝐼)
Assertion
Ref Expression
seqomsuc (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺𝐴)))

Proof of Theorem seqomsuc
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqomlem0 7701 . . 3 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
21seqomlem4 7705 . 2 (𝐴 ∈ ω → ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘suc 𝐴) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘𝐴)))
3 seqom.a . . . 4 𝐺 = seq𝜔(𝐹, 𝐼)
4 df-seqom 7700 . . . 4 seq𝜔(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
53, 4eqtri 2793 . . 3 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
65fveq1i 6334 . 2 (𝐺‘suc 𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘suc 𝐴)
75fveq1i 6334 . . 3 (𝐺𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘𝐴)
87oveq2i 6807 . 2 (𝐴𝐹(𝐺𝐴)) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘𝐴))
92, 6, 83eqtr4g 2830 1 (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  c0 4063  cop 4323   I cid 5157  cima 5253  suc csuc 5867  cfv 6030  (class class class)co 6796  cmpt2 6798  ωcom 7216  reccrdg 7662  seq𝜔cseqom 7699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-seqom 7700
This theorem is referenced by:  cantnfvalf  8730  cantnfval2  8734  cantnfsuc  8735  cnfcomlem  8764  fseqenlem1  9051  fin23lem12  9359
  Copyright terms: Public domain W3C validator