| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomsuc | Structured version Visualization version GIF version | ||
| Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| seqom.a | ⊢ 𝐺 = seqω(𝐹, 𝐼) |
| Ref | Expression |
|---|---|
| seqomsuc | ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem0 8368 | . . 3 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) | |
| 2 | 1 | seqomlem4 8372 | . 2 ⊢ (𝐴 ∈ ω → ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘suc 𝐴) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘𝐴))) |
| 3 | seqom.a | . . . 4 ⊢ 𝐺 = seqω(𝐹, 𝐼) | |
| 4 | df-seqom 8367 | . . . 4 ⊢ seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) | |
| 5 | 3, 4 | eqtri 2754 | . . 3 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) |
| 6 | 5 | fveq1i 6823 | . 2 ⊢ (𝐺‘suc 𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘suc 𝐴) |
| 7 | 5 | fveq1i 6823 | . . 3 ⊢ (𝐺‘𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘𝐴) |
| 8 | 7 | oveq2i 7357 | . 2 ⊢ (𝐴𝐹(𝐺‘𝐴)) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘𝐴)) |
| 9 | 2, 6, 8 | 3eqtr4g 2791 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 〈cop 4579 I cid 5508 “ cima 5617 suc csuc 6308 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 reccrdg 8328 seqωcseqom 8366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 |
| This theorem is referenced by: cantnfvalf 9555 cantnfval2 9559 cantnfsuc 9560 cnfcomlem 9589 fseqenlem1 9915 fin23lem12 10222 |
| Copyright terms: Public domain | W3C validator |