![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqomsuc | Structured version Visualization version GIF version |
Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqom.a | ⊢ 𝐺 = seqω(𝐹, 𝐼) |
Ref | Expression |
---|---|
seqomsuc | ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqomlem0 8448 | . . 3 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩) | |
2 | 1 | seqomlem4 8452 | . 2 ⊢ (𝐴 ∈ ω → ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘suc 𝐴) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘𝐴))) |
3 | seqom.a | . . . 4 ⊢ 𝐺 = seqω(𝐹, 𝐼) | |
4 | df-seqom 8447 | . . . 4 ⊢ seqω(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω) | |
5 | 3, 4 | eqtri 2760 | . . 3 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω) |
6 | 5 | fveq1i 6892 | . 2 ⊢ (𝐺‘suc 𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘suc 𝐴) |
7 | 5 | fveq1i 6892 | . . 3 ⊢ (𝐺‘𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘𝐴) |
8 | 7 | oveq2i 7419 | . 2 ⊢ (𝐴𝐹(𝐺‘𝐴)) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)‘𝐴)) |
9 | 2, 6, 8 | 3eqtr4g 2797 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 ⟨cop 4634 I cid 5573 “ cima 5679 suc csuc 6366 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ωcom 7854 reccrdg 8408 seqωcseqom 8446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-seqom 8447 |
This theorem is referenced by: cantnfvalf 9659 cantnfval2 9663 cantnfsuc 9664 cnfcomlem 9693 fseqenlem1 10018 fin23lem12 10325 |
Copyright terms: Public domain | W3C validator |