| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomlem0 | Structured version Visualization version GIF version | ||
| Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| seqomlem0 | ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6400 | . . . 4 ⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) | |
| 2 | oveq1 7394 | . . . 4 ⊢ (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏)) | |
| 3 | 1, 2 | opeq12d 4845 | . . 3 ⊢ (𝑎 = 𝑐 → 〈suc 𝑎, (𝑎𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑏)〉) |
| 4 | oveq2 7395 | . . . 4 ⊢ (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑)) | |
| 5 | 4 | opeq2d 4844 | . . 3 ⊢ (𝑏 = 𝑑 → 〈suc 𝑐, (𝑐𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
| 6 | 3, 5 | cbvmpov 7484 | . 2 ⊢ (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
| 7 | rdgeq1 8379 | . 2 ⊢ ((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉)) | |
| 8 | 6, 7 | ax-mp 5 | 1 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∅c0 4296 〈cop 4595 I cid 5532 suc csuc 6334 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 reccrdg 8377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-suc 6338 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 |
| This theorem is referenced by: fnseqom 8423 seqom0g 8424 seqomsuc 8425 |
| Copyright terms: Public domain | W3C validator |