MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem0 Structured version   Visualization version   GIF version

Theorem seqomlem0 8450
Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomlem0 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Distinct variable groups:   𝐹,𝑎,𝑏,𝑐,𝑑   𝐼,𝑎,𝑏,𝑐,𝑑

Proof of Theorem seqomlem0
StepHypRef Expression
1 suceq 6424 . . . 4 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
2 oveq1 7412 . . . 4 (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏))
31, 2opeq12d 4876 . . 3 (𝑎 = 𝑐 → ⟨suc 𝑎, (𝑎𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑏)⟩)
4 oveq2 7413 . . . 4 (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑))
54opeq2d 4875 . . 3 (𝑏 = 𝑑 → ⟨suc 𝑐, (𝑐𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
63, 5cbvmpov 7500 . 2 (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
7 rdgeq1 8412 . 2 ((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩))
86, 7ax-mp 5 1 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3468  c0 4317  cop 4629   I cid 5566  suc csuc 6360  cfv 6537  (class class class)co 7405  cmpo 7407  ωcom 7852  reccrdg 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-xp 5675  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-suc 6364  df-iota 6489  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411
This theorem is referenced by:  fnseqom  8456  seqom0g  8457  seqomsuc  8458
  Copyright terms: Public domain W3C validator