| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomlem0 | Structured version Visualization version GIF version | ||
| Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| seqomlem0 | ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6369 | . . . 4 ⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) | |
| 2 | oveq1 7348 | . . . 4 ⊢ (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏)) | |
| 3 | 1, 2 | opeq12d 4828 | . . 3 ⊢ (𝑎 = 𝑐 → 〈suc 𝑎, (𝑎𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑏)〉) |
| 4 | oveq2 7349 | . . . 4 ⊢ (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑)) | |
| 5 | 4 | opeq2d 4827 | . . 3 ⊢ (𝑏 = 𝑑 → 〈suc 𝑐, (𝑐𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
| 6 | 3, 5 | cbvmpov 7436 | . 2 ⊢ (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
| 7 | rdgeq1 8325 | . 2 ⊢ ((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉)) | |
| 8 | 6, 7 | ax-mp 5 | 1 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∅c0 4278 〈cop 4577 I cid 5505 suc csuc 6303 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ωcom 7791 reccrdg 8323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-suc 6307 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 |
| This theorem is referenced by: fnseqom 8369 seqom0g 8370 seqomsuc 8371 |
| Copyright terms: Public domain | W3C validator |