MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem0 Structured version   Visualization version   GIF version

Theorem seqomlem0 8267
Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomlem0 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Distinct variable groups:   𝐹,𝑎,𝑏,𝑐,𝑑   𝐼,𝑎,𝑏,𝑐,𝑑

Proof of Theorem seqomlem0
StepHypRef Expression
1 suceq 6324 . . . 4 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
2 oveq1 7274 . . . 4 (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏))
31, 2opeq12d 4812 . . 3 (𝑎 = 𝑐 → ⟨suc 𝑎, (𝑎𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑏)⟩)
4 oveq2 7275 . . . 4 (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑))
54opeq2d 4811 . . 3 (𝑏 = 𝑑 → ⟨suc 𝑐, (𝑐𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
63, 5cbvmpov 7360 . 2 (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
7 rdgeq1 8229 . 2 ((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩))
86, 7ax-mp 5 1 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3429  c0 4256  cop 4567   I cid 5483  suc csuc 6261  cfv 6426  (class class class)co 7267  cmpo 7269  ωcom 7702  reccrdg 8227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-xp 5590  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-suc 6265  df-iota 6384  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228
This theorem is referenced by:  fnseqom  8273  seqom0g  8274  seqomsuc  8275
  Copyright terms: Public domain W3C validator