![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqomlem0 | Structured version Visualization version GIF version |
Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomlem0 | ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 6430 | . . . 4 ⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) | |
2 | oveq1 7415 | . . . 4 ⊢ (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏)) | |
3 | 1, 2 | opeq12d 4881 | . . 3 ⊢ (𝑎 = 𝑐 → ⟨suc 𝑎, (𝑎𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑏)⟩) |
4 | oveq2 7416 | . . . 4 ⊢ (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑)) | |
5 | 4 | opeq2d 4880 | . . 3 ⊢ (𝑏 = 𝑑 → ⟨suc 𝑐, (𝑐𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) |
6 | 3, 5 | cbvmpov 7503 | . 2 ⊢ (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) |
7 | rdgeq1 8410 | . 2 ⊢ ((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)) | |
8 | 6, 7 | ax-mp 5 | 1 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3474 ∅c0 4322 ⟨cop 4634 I cid 5573 suc csuc 6366 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ωcom 7854 reccrdg 8408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-suc 6370 df-iota 6495 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 |
This theorem is referenced by: fnseqom 8454 seqom0g 8455 seqomsuc 8456 |
Copyright terms: Public domain | W3C validator |