Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqomlem0 | Structured version Visualization version GIF version |
Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomlem0 | ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 6324 | . . . 4 ⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) | |
2 | oveq1 7274 | . . . 4 ⊢ (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏)) | |
3 | 1, 2 | opeq12d 4812 | . . 3 ⊢ (𝑎 = 𝑐 → 〈suc 𝑎, (𝑎𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑏)〉) |
4 | oveq2 7275 | . . . 4 ⊢ (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑)) | |
5 | 4 | opeq2d 4811 | . . 3 ⊢ (𝑏 = 𝑑 → 〈suc 𝑐, (𝑐𝐹𝑏)〉 = 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
6 | 3, 5 | cbvmpov 7360 | . 2 ⊢ (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) |
7 | rdgeq1 8229 | . 2 ⊢ ((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉)) | |
8 | 6, 7 | ax-mp 5 | 1 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3429 ∅c0 4256 〈cop 4567 I cid 5483 suc csuc 6261 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 ωcom 7702 reccrdg 8227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-xp 5590 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-suc 6265 df-iota 6384 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 |
This theorem is referenced by: fnseqom 8273 seqom0g 8274 seqomsuc 8275 |
Copyright terms: Public domain | W3C validator |