MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem0 Structured version   Visualization version   GIF version

Theorem seqomlem0 8488
Description: Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomlem0 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Distinct variable groups:   𝐹,𝑎,𝑏,𝑐,𝑑   𝐼,𝑎,𝑏,𝑐,𝑑

Proof of Theorem seqomlem0
StepHypRef Expression
1 suceq 6452 . . . 4 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
2 oveq1 7438 . . . 4 (𝑎 = 𝑐 → (𝑎𝐹𝑏) = (𝑐𝐹𝑏))
31, 2opeq12d 4886 . . 3 (𝑎 = 𝑐 → ⟨suc 𝑎, (𝑎𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑏)⟩)
4 oveq2 7439 . . . 4 (𝑏 = 𝑑 → (𝑐𝐹𝑏) = (𝑐𝐹𝑑))
54opeq2d 4885 . . 3 (𝑏 = 𝑑 → ⟨suc 𝑐, (𝑐𝐹𝑏)⟩ = ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
63, 5cbvmpov 7528 . 2 (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩)
7 rdgeq1 8450 . 2 ((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩))
86, 7ax-mp 5 1 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  c0 4339  cop 4637   I cid 5582  suc csuc 6388  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-suc 6392  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  fnseqom  8494  seqom0g  8495  seqomsuc  8496
  Copyright terms: Public domain W3C validator