| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version | ||
| Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| choccl.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | choccl 31292 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ‘cfv 6536 Cℋ cch 30915 ⊥cort 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 ax-hcompl 31188 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cn 23170 df-cnp 23171 df-lm 23172 df-haus 23258 df-tx 23505 df-hmeo 23698 df-xms 24264 df-ms 24265 df-tms 24266 df-cau 25213 df-grpo 30479 df-gid 30480 df-ginv 30481 df-gdiv 30482 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-vs 30585 df-nmcv 30586 df-ims 30587 df-dip 30687 df-hnorm 30954 df-hvsub 30957 df-hlim 30958 df-hcau 30959 df-sh 31193 df-ch 31207 df-oc 31238 |
| This theorem is referenced by: pjoc1i 31417 pjoc2i 31424 chsscon3i 31447 chsscon1i 31448 chdmm1i 31463 chdmm2i 31464 chdmm3i 31465 chdmm4i 31466 chdmj1i 31467 chdmj2i 31468 chdmj3i 31469 chdmj4i 31470 sshhococi 31532 h1de2bi 31540 h1de2ctlem 31541 h1de2ci 31542 spanunsni 31565 pjoml2i 31571 pjoml3i 31572 pjoml4i 31573 pjoml6i 31575 cmcmlem 31577 cmcm2i 31579 cmcm3i 31580 cmcm4i 31581 cmbr2i 31582 cmbr3i 31586 cmbr4i 31587 cm0 31595 fh3i 31609 fh4i 31610 cm2mi 31612 qlax5i 31617 qlaxr3i 31622 osumcori 31629 osumcor2i 31630 spansnji 31632 3oalem5 31652 3oalem6 31653 3oai 31654 pjcompi 31658 pjadjii 31660 pjaddii 31661 pjmulii 31663 pjss2i 31666 pjssmii 31667 pjssge0ii 31668 pjcji 31670 pjocini 31684 pjds3i 31699 pjnormi 31707 pjpythi 31708 pjneli 31709 mayetes3i 31715 riesz3i 32048 pjnormssi 32154 pjssdif2i 32160 pjssdif1i 32161 pjimai 32162 pjoccoi 32164 pjtoi 32165 pjoci 32166 pjclem1 32181 pjci 32186 hst0 32219 sto1i 32222 sto2i 32223 stlei 32226 stji1i 32228 golem1 32257 golem2 32258 goeqi 32259 stcltrlem1 32262 stcltrlem2 32263 mdsldmd1i 32317 hatomistici 32348 cvexchi 32355 atomli 32368 atordi 32370 chirredlem4 32379 chirredi 32380 mdsymi 32397 cmmdi 32402 cmdmdi 32403 mdoc1i 32411 mdoc2i 32412 dmdoc1i 32413 dmdoc2i 32414 mdcompli 32415 dmdcompli 32416 mddmdin0i 32417 |
| Copyright terms: Public domain | W3C validator |