| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version | ||
| Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| choccl.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | choccl 31286 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ‘cfv 6481 Cℋ cch 30909 ⊥cort 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 ax-hcompl 31182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-cnp 23143 df-lm 23144 df-haus 23230 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 df-cau 25183 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-hnorm 30948 df-hvsub 30951 df-hlim 30952 df-hcau 30953 df-sh 31187 df-ch 31201 df-oc 31232 |
| This theorem is referenced by: pjoc1i 31411 pjoc2i 31418 chsscon3i 31441 chsscon1i 31442 chdmm1i 31457 chdmm2i 31458 chdmm3i 31459 chdmm4i 31460 chdmj1i 31461 chdmj2i 31462 chdmj3i 31463 chdmj4i 31464 sshhococi 31526 h1de2bi 31534 h1de2ctlem 31535 h1de2ci 31536 spanunsni 31559 pjoml2i 31565 pjoml3i 31566 pjoml4i 31567 pjoml6i 31569 cmcmlem 31571 cmcm2i 31573 cmcm3i 31574 cmcm4i 31575 cmbr2i 31576 cmbr3i 31580 cmbr4i 31581 cm0 31589 fh3i 31603 fh4i 31604 cm2mi 31606 qlax5i 31611 qlaxr3i 31616 osumcori 31623 osumcor2i 31624 spansnji 31626 3oalem5 31646 3oalem6 31647 3oai 31648 pjcompi 31652 pjadjii 31654 pjaddii 31655 pjmulii 31657 pjss2i 31660 pjssmii 31661 pjssge0ii 31662 pjcji 31664 pjocini 31678 pjds3i 31693 pjnormi 31701 pjpythi 31702 pjneli 31703 mayetes3i 31709 riesz3i 32042 pjnormssi 32148 pjssdif2i 32154 pjssdif1i 32155 pjimai 32156 pjoccoi 32158 pjtoi 32159 pjoci 32160 pjclem1 32175 pjci 32180 hst0 32213 sto1i 32216 sto2i 32217 stlei 32220 stji1i 32222 golem1 32251 golem2 32252 goeqi 32253 stcltrlem1 32256 stcltrlem2 32257 mdsldmd1i 32311 hatomistici 32342 cvexchi 32349 atomli 32362 atordi 32364 chirredlem4 32373 chirredi 32374 mdsymi 32391 cmmdi 32396 cmdmdi 32397 mdoc1i 32405 mdoc2i 32406 dmdoc1i 32407 dmdoc2i 32408 mdcompli 32409 dmdcompli 32410 mddmdin0i 32411 |
| Copyright terms: Public domain | W3C validator |