Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version |
Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choccl.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | choccl 29193 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ‘cfv 6339 Cℋ cch 28816 ⊥cort 28817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 ax-mulf 10660 ax-hilex 28886 ax-hfvadd 28887 ax-hvcom 28888 ax-hvass 28889 ax-hv0cl 28890 ax-hvaddid 28891 ax-hfvmul 28892 ax-hvmulid 28893 ax-hvmulass 28894 ax-hvdistr1 28895 ax-hvdistr2 28896 ax-hvmul0 28897 ax-hfi 28966 ax-his1 28969 ax-his2 28970 ax-his3 28971 ax-his4 28972 ax-hcompl 29089 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-2o 8118 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-fi 8913 df-sup 8944 df-inf 8945 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-ioo 12788 df-icc 12791 df-fz 12945 df-fzo 13088 df-seq 13424 df-exp 13485 df-hash 13746 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-clim 14898 df-sum 15096 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-starv 16643 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-hom 16652 df-cco 16653 df-rest 16759 df-topn 16760 df-0g 16778 df-gsum 16779 df-topgen 16780 df-pt 16781 df-prds 16784 df-xrs 16838 df-qtop 16843 df-imas 16844 df-xps 16846 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-mulg 18297 df-cntz 18519 df-cmn 18980 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-cnfld 20172 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-cn 21932 df-cnp 21933 df-lm 21934 df-haus 22020 df-tx 22267 df-hmeo 22460 df-xms 23027 df-ms 23028 df-tms 23029 df-cau 23961 df-grpo 28380 df-gid 28381 df-ginv 28382 df-gdiv 28383 df-ablo 28432 df-vc 28446 df-nv 28479 df-va 28482 df-ba 28483 df-sm 28484 df-0v 28485 df-vs 28486 df-nmcv 28487 df-ims 28488 df-dip 28588 df-hnorm 28855 df-hvsub 28858 df-hlim 28859 df-hcau 28860 df-sh 29094 df-ch 29108 df-oc 29139 |
This theorem is referenced by: pjoc1i 29318 pjoc2i 29325 chsscon3i 29348 chsscon1i 29349 chdmm1i 29364 chdmm2i 29365 chdmm3i 29366 chdmm4i 29367 chdmj1i 29368 chdmj2i 29369 chdmj3i 29370 chdmj4i 29371 sshhococi 29433 h1de2bi 29441 h1de2ctlem 29442 h1de2ci 29443 spanunsni 29466 pjoml2i 29472 pjoml3i 29473 pjoml4i 29474 pjoml6i 29476 cmcmlem 29478 cmcm2i 29480 cmcm3i 29481 cmcm4i 29482 cmbr2i 29483 cmbr3i 29487 cmbr4i 29488 cm0 29496 fh3i 29510 fh4i 29511 cm2mi 29513 qlax5i 29518 qlaxr3i 29523 osumcori 29530 osumcor2i 29531 spansnji 29533 3oalem5 29553 3oalem6 29554 3oai 29555 pjcompi 29559 pjadjii 29561 pjaddii 29562 pjmulii 29564 pjss2i 29567 pjssmii 29568 pjssge0ii 29569 pjcji 29571 pjocini 29585 pjds3i 29600 pjnormi 29608 pjpythi 29609 pjneli 29610 mayetes3i 29616 riesz3i 29949 pjnormssi 30055 pjssdif2i 30061 pjssdif1i 30062 pjimai 30063 pjoccoi 30065 pjtoi 30066 pjoci 30067 pjclem1 30082 pjci 30087 hst0 30120 sto1i 30123 sto2i 30124 stlei 30127 stji1i 30129 golem1 30158 golem2 30159 goeqi 30160 stcltrlem1 30163 stcltrlem2 30164 mdsldmd1i 30218 hatomistici 30249 cvexchi 30256 atomli 30269 atordi 30271 chirredlem4 30280 chirredi 30281 mdsymi 30298 cmmdi 30303 cmdmdi 30304 mdoc1i 30312 mdoc2i 30313 dmdoc1i 30314 dmdoc2i 30315 mdcompli 30316 dmdcompli 30317 mddmdin0i 30318 |
Copyright terms: Public domain | W3C validator |