| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version | ||
| Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| choccl.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | choccl 31241 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ‘cfv 6513 Cℋ cch 30864 ⊥cort 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 ax-hilex 30934 ax-hfvadd 30935 ax-hvcom 30936 ax-hvass 30937 ax-hv0cl 30938 ax-hvaddid 30939 ax-hfvmul 30940 ax-hvmulid 30941 ax-hvmulass 30942 ax-hvdistr1 30943 ax-hvdistr2 30944 ax-hvmul0 30945 ax-hfi 31014 ax-his1 31017 ax-his2 31018 ax-his3 31019 ax-his4 31020 ax-hcompl 31137 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-icc 13319 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-sum 15659 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cn 23120 df-cnp 23121 df-lm 23122 df-haus 23208 df-tx 23455 df-hmeo 23648 df-xms 24214 df-ms 24215 df-tms 24216 df-cau 25162 df-grpo 30428 df-gid 30429 df-ginv 30430 df-gdiv 30431 df-ablo 30480 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-vs 30534 df-nmcv 30535 df-ims 30536 df-dip 30636 df-hnorm 30903 df-hvsub 30906 df-hlim 30907 df-hcau 30908 df-sh 31142 df-ch 31156 df-oc 31187 |
| This theorem is referenced by: pjoc1i 31366 pjoc2i 31373 chsscon3i 31396 chsscon1i 31397 chdmm1i 31412 chdmm2i 31413 chdmm3i 31414 chdmm4i 31415 chdmj1i 31416 chdmj2i 31417 chdmj3i 31418 chdmj4i 31419 sshhococi 31481 h1de2bi 31489 h1de2ctlem 31490 h1de2ci 31491 spanunsni 31514 pjoml2i 31520 pjoml3i 31521 pjoml4i 31522 pjoml6i 31524 cmcmlem 31526 cmcm2i 31528 cmcm3i 31529 cmcm4i 31530 cmbr2i 31531 cmbr3i 31535 cmbr4i 31536 cm0 31544 fh3i 31558 fh4i 31559 cm2mi 31561 qlax5i 31566 qlaxr3i 31571 osumcori 31578 osumcor2i 31579 spansnji 31581 3oalem5 31601 3oalem6 31602 3oai 31603 pjcompi 31607 pjadjii 31609 pjaddii 31610 pjmulii 31612 pjss2i 31615 pjssmii 31616 pjssge0ii 31617 pjcji 31619 pjocini 31633 pjds3i 31648 pjnormi 31656 pjpythi 31657 pjneli 31658 mayetes3i 31664 riesz3i 31997 pjnormssi 32103 pjssdif2i 32109 pjssdif1i 32110 pjimai 32111 pjoccoi 32113 pjtoi 32114 pjoci 32115 pjclem1 32130 pjci 32135 hst0 32168 sto1i 32171 sto2i 32172 stlei 32175 stji1i 32177 golem1 32206 golem2 32207 goeqi 32208 stcltrlem1 32211 stcltrlem2 32212 mdsldmd1i 32266 hatomistici 32297 cvexchi 32304 atomli 32317 atordi 32319 chirredlem4 32328 chirredi 32329 mdsymi 32346 cmmdi 32351 cmdmdi 32352 mdoc1i 32360 mdoc2i 32361 dmdoc1i 32362 dmdoc2i 32363 mdcompli 32364 dmdcompli 32365 mddmdin0i 32366 |
| Copyright terms: Public domain | W3C validator |