| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version | ||
| Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| choccl.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | choccl 31272 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ‘cfv 6542 Cℋ cch 30895 ⊥cort 30896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 ax-hilex 30965 ax-hfvadd 30966 ax-hvcom 30967 ax-hvass 30968 ax-hv0cl 30969 ax-hvaddid 30970 ax-hfvmul 30971 ax-hvmulid 30972 ax-hvmulass 30973 ax-hvdistr1 30974 ax-hvdistr2 30975 ax-hvmul0 30976 ax-hfi 31045 ax-his1 31048 ax-his2 31049 ax-his3 31050 ax-his4 31051 ax-hcompl 31168 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-icc 13377 df-fz 13531 df-fzo 13678 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cn 23200 df-cnp 23201 df-lm 23202 df-haus 23288 df-tx 23535 df-hmeo 23728 df-xms 24294 df-ms 24295 df-tms 24296 df-cau 25245 df-grpo 30459 df-gid 30460 df-ginv 30461 df-gdiv 30462 df-ablo 30511 df-vc 30525 df-nv 30558 df-va 30561 df-ba 30562 df-sm 30563 df-0v 30564 df-vs 30565 df-nmcv 30566 df-ims 30567 df-dip 30667 df-hnorm 30934 df-hvsub 30937 df-hlim 30938 df-hcau 30939 df-sh 31173 df-ch 31187 df-oc 31218 |
| This theorem is referenced by: pjoc1i 31397 pjoc2i 31404 chsscon3i 31427 chsscon1i 31428 chdmm1i 31443 chdmm2i 31444 chdmm3i 31445 chdmm4i 31446 chdmj1i 31447 chdmj2i 31448 chdmj3i 31449 chdmj4i 31450 sshhococi 31512 h1de2bi 31520 h1de2ctlem 31521 h1de2ci 31522 spanunsni 31545 pjoml2i 31551 pjoml3i 31552 pjoml4i 31553 pjoml6i 31555 cmcmlem 31557 cmcm2i 31559 cmcm3i 31560 cmcm4i 31561 cmbr2i 31562 cmbr3i 31566 cmbr4i 31567 cm0 31575 fh3i 31589 fh4i 31590 cm2mi 31592 qlax5i 31597 qlaxr3i 31602 osumcori 31609 osumcor2i 31610 spansnji 31612 3oalem5 31632 3oalem6 31633 3oai 31634 pjcompi 31638 pjadjii 31640 pjaddii 31641 pjmulii 31643 pjss2i 31646 pjssmii 31647 pjssge0ii 31648 pjcji 31650 pjocini 31664 pjds3i 31679 pjnormi 31687 pjpythi 31688 pjneli 31689 mayetes3i 31695 riesz3i 32028 pjnormssi 32134 pjssdif2i 32140 pjssdif1i 32141 pjimai 32142 pjoccoi 32144 pjtoi 32145 pjoci 32146 pjclem1 32161 pjci 32166 hst0 32199 sto1i 32202 sto2i 32203 stlei 32206 stji1i 32208 golem1 32237 golem2 32238 goeqi 32239 stcltrlem1 32242 stcltrlem2 32243 mdsldmd1i 32297 hatomistici 32328 cvexchi 32335 atomli 32348 atordi 32350 chirredlem4 32359 chirredi 32360 mdsymi 32377 cmmdi 32382 cmdmdi 32383 mdoc1i 32391 mdoc2i 32392 dmdoc1i 32393 dmdoc2i 32394 mdcompli 32395 dmdcompli 32396 mddmdin0i 32397 |
| Copyright terms: Public domain | W3C validator |