| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version | ||
| Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| choccl.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | choccl 31285 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ‘cfv 6499 Cℋ cch 30908 ⊥cort 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvmulass 30986 ax-hvdistr1 30987 ax-hvdistr2 30988 ax-hvmul0 30989 ax-hfi 31058 ax-his1 31061 ax-his2 31062 ax-his3 31063 ax-his4 31064 ax-hcompl 31181 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cn 23147 df-cnp 23148 df-lm 23149 df-haus 23235 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 df-cau 25189 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-dip 30680 df-hnorm 30947 df-hvsub 30950 df-hlim 30951 df-hcau 30952 df-sh 31186 df-ch 31200 df-oc 31231 |
| This theorem is referenced by: pjoc1i 31410 pjoc2i 31417 chsscon3i 31440 chsscon1i 31441 chdmm1i 31456 chdmm2i 31457 chdmm3i 31458 chdmm4i 31459 chdmj1i 31460 chdmj2i 31461 chdmj3i 31462 chdmj4i 31463 sshhococi 31525 h1de2bi 31533 h1de2ctlem 31534 h1de2ci 31535 spanunsni 31558 pjoml2i 31564 pjoml3i 31565 pjoml4i 31566 pjoml6i 31568 cmcmlem 31570 cmcm2i 31572 cmcm3i 31573 cmcm4i 31574 cmbr2i 31575 cmbr3i 31579 cmbr4i 31580 cm0 31588 fh3i 31602 fh4i 31603 cm2mi 31605 qlax5i 31610 qlaxr3i 31615 osumcori 31622 osumcor2i 31623 spansnji 31625 3oalem5 31645 3oalem6 31646 3oai 31647 pjcompi 31651 pjadjii 31653 pjaddii 31654 pjmulii 31656 pjss2i 31659 pjssmii 31660 pjssge0ii 31661 pjcji 31663 pjocini 31677 pjds3i 31692 pjnormi 31700 pjpythi 31701 pjneli 31702 mayetes3i 31708 riesz3i 32041 pjnormssi 32147 pjssdif2i 32153 pjssdif1i 32154 pjimai 32155 pjoccoi 32157 pjtoi 32158 pjoci 32159 pjclem1 32174 pjci 32179 hst0 32212 sto1i 32215 sto2i 32216 stlei 32219 stji1i 32221 golem1 32250 golem2 32251 goeqi 32252 stcltrlem1 32255 stcltrlem2 32256 mdsldmd1i 32310 hatomistici 32341 cvexchi 32348 atomli 32361 atordi 32363 chirredlem4 32372 chirredi 32373 mdsymi 32390 cmmdi 32395 cmdmdi 32396 mdoc1i 32404 mdoc2i 32405 dmdoc1i 32406 dmdoc2i 32407 mdcompli 32408 dmdcompli 32409 mddmdin0i 32410 |
| Copyright terms: Public domain | W3C validator |