HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  choccli Structured version   Visualization version   GIF version

Theorem choccli 31251
Description: Closure of C orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
choccl.1 𝐴C
Assertion
Ref Expression
choccli (⊥‘𝐴) ∈ C

Proof of Theorem choccli
StepHypRef Expression
1 choccl.1 . 2 𝐴C
2 choccl 31250 . 2 (𝐴C → (⊥‘𝐴) ∈ C )
31, 2ax-mp 5 1 (⊥‘𝐴) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cfv 6482   C cch 30873  cort 30874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029  ax-hcompl 31146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cau 25154  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-hnorm 30912  df-hvsub 30915  df-hlim 30916  df-hcau 30917  df-sh 31151  df-ch 31165  df-oc 31196
This theorem is referenced by:  pjoc1i  31375  pjoc2i  31382  chsscon3i  31405  chsscon1i  31406  chdmm1i  31421  chdmm2i  31422  chdmm3i  31423  chdmm4i  31424  chdmj1i  31425  chdmj2i  31426  chdmj3i  31427  chdmj4i  31428  sshhococi  31490  h1de2bi  31498  h1de2ctlem  31499  h1de2ci  31500  spanunsni  31523  pjoml2i  31529  pjoml3i  31530  pjoml4i  31531  pjoml6i  31533  cmcmlem  31535  cmcm2i  31537  cmcm3i  31538  cmcm4i  31539  cmbr2i  31540  cmbr3i  31544  cmbr4i  31545  cm0  31553  fh3i  31567  fh4i  31568  cm2mi  31570  qlax5i  31575  qlaxr3i  31580  osumcori  31587  osumcor2i  31588  spansnji  31590  3oalem5  31610  3oalem6  31611  3oai  31612  pjcompi  31616  pjadjii  31618  pjaddii  31619  pjmulii  31621  pjss2i  31624  pjssmii  31625  pjssge0ii  31626  pjcji  31628  pjocini  31642  pjds3i  31657  pjnormi  31665  pjpythi  31666  pjneli  31667  mayetes3i  31673  riesz3i  32006  pjnormssi  32112  pjssdif2i  32118  pjssdif1i  32119  pjimai  32120  pjoccoi  32122  pjtoi  32123  pjoci  32124  pjclem1  32139  pjci  32144  hst0  32177  sto1i  32180  sto2i  32181  stlei  32184  stji1i  32186  golem1  32215  golem2  32216  goeqi  32217  stcltrlem1  32220  stcltrlem2  32221  mdsldmd1i  32275  hatomistici  32306  cvexchi  32313  atomli  32326  atordi  32328  chirredlem4  32337  chirredi  32338  mdsymi  32355  cmmdi  32360  cmdmdi  32361  mdoc1i  32369  mdoc2i  32370  dmdoc1i  32371  dmdoc2i  32372  mdcompli  32373  dmdcompli  32374  mddmdin0i  32375
  Copyright terms: Public domain W3C validator