| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsval2i | Structured version Visualization version GIF version | ||
| Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shlesb1.1 | ⊢ 𝐴 ∈ Sℋ |
| shlesb1.2 | ⊢ 𝐵 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shsval2i | ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4137 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | ssintub 4926 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | |
| 3 | 1, 2 | sstri 3953 | . . . 4 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 4 | ssun2 4138 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 5 | 4, 2 | sstri 3953 | . . . 4 ⊢ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
| 7 | shlesb1.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 8 | shlesb1.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 9 | ssrab2 4039 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ | |
| 10 | 7, 8 | shscli 31296 | . . . . . . 7 ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ |
| 11 | 7, 8 | shunssi 31347 | . . . . . . 7 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
| 12 | sseq2 3970 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 +ℋ 𝐵) → ((𝐴 ∪ 𝐵) ⊆ 𝑥 ↔ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) | |
| 13 | 12 | rspcev 3585 | . . . . . . 7 ⊢ (((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵)) → ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) |
| 14 | 10, 11, 13 | mp2an 692 | . . . . . 6 ⊢ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥 |
| 15 | rabn0 4348 | . . . . . 6 ⊢ ({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) | |
| 16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ |
| 17 | shintcl 31309 | . . . . 5 ⊢ (({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ ∧ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ ) | |
| 18 | 9, 16, 17 | mp2an 692 | . . . 4 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ |
| 19 | 7, 8, 18 | shslubi 31364 | . . 3 ⊢ ((𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) ↔ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
| 20 | 6, 19 | mpbi 230 | . 2 ⊢ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 21 | 12 | elrab 3656 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ↔ ((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) |
| 22 | 10, 11, 21 | mpbir2an 711 | . . 3 ⊢ (𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 23 | intss1 4923 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵)) | |
| 24 | 22, 23 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵) |
| 25 | 20, 24 | eqssi 3960 | 1 ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 ∪ cun 3909 ⊆ wss 3911 ∅c0 4292 ∩ cint 4906 (class class class)co 7369 Sℋ csh 30907 +ℋ cph 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvmulass 30986 ax-hvdistr1 30987 ax-hvdistr2 30988 ax-hvmul0 30989 ax-hfi 31058 ax-his1 31061 ax-his2 31062 ax-his3 31063 ax-his4 31064 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-topgen 17382 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-top 22814 df-topon 22831 df-bases 22866 df-lm 23149 df-haus 23235 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-hnorm 30947 df-hvsub 30950 df-hlim 30951 df-sh 31186 df-ch 31200 df-ch0 31232 df-shs 31287 |
| This theorem is referenced by: shsval3i 31367 |
| Copyright terms: Public domain | W3C validator |