Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shsval2i | Structured version Visualization version GIF version |
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shlesb1.1 | ⊢ 𝐴 ∈ Sℋ |
shlesb1.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shsval2i | ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4078 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | ssintub 4857 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | |
3 | 1, 2 | sstri 3902 | . . . 4 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
4 | ssun2 4079 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
5 | 4, 2 | sstri 3902 | . . . 4 ⊢ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
6 | 3, 5 | pm3.2i 475 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
7 | shlesb1.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
8 | shlesb1.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
9 | ssrab2 3985 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ | |
10 | 7, 8 | shscli 29192 | . . . . . . 7 ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ |
11 | 7, 8 | shunssi 29243 | . . . . . . 7 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
12 | sseq2 3919 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 +ℋ 𝐵) → ((𝐴 ∪ 𝐵) ⊆ 𝑥 ↔ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) | |
13 | 12 | rspcev 3542 | . . . . . . 7 ⊢ (((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵)) → ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) |
14 | 10, 11, 13 | mp2an 692 | . . . . . 6 ⊢ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥 |
15 | rabn0 4282 | . . . . . 6 ⊢ ({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) | |
16 | 14, 15 | mpbir 234 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ |
17 | shintcl 29205 | . . . . 5 ⊢ (({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ ∧ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ ) | |
18 | 9, 16, 17 | mp2an 692 | . . . 4 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ |
19 | 7, 8, 18 | shslubi 29260 | . . 3 ⊢ ((𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) ↔ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
20 | 6, 19 | mpbi 233 | . 2 ⊢ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
21 | 12 | elrab 3603 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ↔ ((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) |
22 | 10, 11, 21 | mpbir2an 711 | . . 3 ⊢ (𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
23 | intss1 4854 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵)) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵) |
25 | 20, 24 | eqssi 3909 | 1 ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 {crab 3075 ∪ cun 3857 ⊆ wss 3859 ∅c0 4226 ∩ cint 4839 (class class class)co 7151 Sℋ csh 28803 +ℋ cph 28806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 ax-addf 10647 ax-mulf 10648 ax-hilex 28874 ax-hfvadd 28875 ax-hvcom 28876 ax-hvass 28877 ax-hv0cl 28878 ax-hvaddid 28879 ax-hfvmul 28880 ax-hvmulid 28881 ax-hvmulass 28882 ax-hvdistr1 28883 ax-hvdistr2 28884 ax-hvmul0 28885 ax-hfi 28954 ax-his1 28957 ax-his2 28958 ax-his3 28959 ax-his4 28960 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-pm 8420 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8932 df-inf 8933 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-n0 11928 df-z 12014 df-uz 12276 df-q 12382 df-rp 12424 df-xneg 12541 df-xadd 12542 df-xmul 12543 df-icc 12779 df-seq 13412 df-exp 13473 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-topgen 16768 df-psmet 20151 df-xmet 20152 df-met 20153 df-bl 20154 df-mopn 20155 df-top 21587 df-topon 21604 df-bases 21639 df-lm 21922 df-haus 22008 df-grpo 28368 df-gid 28369 df-ginv 28370 df-gdiv 28371 df-ablo 28420 df-vc 28434 df-nv 28467 df-va 28470 df-ba 28471 df-sm 28472 df-0v 28473 df-vs 28474 df-nmcv 28475 df-ims 28476 df-hnorm 28843 df-hvsub 28846 df-hlim 28847 df-sh 29082 df-ch 29096 df-ch0 29128 df-shs 29183 |
This theorem is referenced by: shsval3i 29263 |
Copyright terms: Public domain | W3C validator |