| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsval2i | Structured version Visualization version GIF version | ||
| Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shlesb1.1 | ⊢ 𝐴 ∈ Sℋ |
| shlesb1.2 | ⊢ 𝐵 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shsval2i | ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4178 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | ssintub 4966 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | |
| 3 | 1, 2 | sstri 3993 | . . . 4 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 4 | ssun2 4179 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 5 | 4, 2 | sstri 3993 | . . . 4 ⊢ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
| 7 | shlesb1.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 8 | shlesb1.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 9 | ssrab2 4080 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ | |
| 10 | 7, 8 | shscli 31336 | . . . . . . 7 ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ |
| 11 | 7, 8 | shunssi 31387 | . . . . . . 7 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
| 12 | sseq2 4010 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 +ℋ 𝐵) → ((𝐴 ∪ 𝐵) ⊆ 𝑥 ↔ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) | |
| 13 | 12 | rspcev 3622 | . . . . . . 7 ⊢ (((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵)) → ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) |
| 14 | 10, 11, 13 | mp2an 692 | . . . . . 6 ⊢ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥 |
| 15 | rabn0 4389 | . . . . . 6 ⊢ ({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) | |
| 16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ |
| 17 | shintcl 31349 | . . . . 5 ⊢ (({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ ∧ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ ) | |
| 18 | 9, 16, 17 | mp2an 692 | . . . 4 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ |
| 19 | 7, 8, 18 | shslubi 31404 | . . 3 ⊢ ((𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) ↔ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
| 20 | 6, 19 | mpbi 230 | . 2 ⊢ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 21 | 12 | elrab 3692 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ↔ ((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) |
| 22 | 10, 11, 21 | mpbir2an 711 | . . 3 ⊢ (𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| 23 | intss1 4963 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵)) | |
| 24 | 22, 23 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵) |
| 25 | 20, 24 | eqssi 4000 | 1 ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {crab 3436 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 ∩ cint 4946 (class class class)co 7431 Sℋ csh 30947 +ℋ cph 30950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-lm 23237 df-haus 23323 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 df-ims 30620 df-hnorm 30987 df-hvsub 30990 df-hlim 30991 df-sh 31226 df-ch 31240 df-ch0 31272 df-shs 31327 |
| This theorem is referenced by: shsval3i 31407 |
| Copyright terms: Public domain | W3C validator |