![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsval2i | Structured version Visualization version GIF version |
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shlesb1.1 | ⊢ 𝐴 ∈ Sℋ |
shlesb1.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shsval2i | ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4187 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | ssintub 4970 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | |
3 | 1, 2 | sstri 4004 | . . . 4 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
4 | ssun2 4188 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
5 | 4, 2 | sstri 4004 | . . . 4 ⊢ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
7 | shlesb1.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
8 | shlesb1.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
9 | ssrab2 4089 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ | |
10 | 7, 8 | shscli 31345 | . . . . . . 7 ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ |
11 | 7, 8 | shunssi 31396 | . . . . . . 7 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
12 | sseq2 4021 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 +ℋ 𝐵) → ((𝐴 ∪ 𝐵) ⊆ 𝑥 ↔ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) | |
13 | 12 | rspcev 3621 | . . . . . . 7 ⊢ (((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵)) → ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) |
14 | 10, 11, 13 | mp2an 692 | . . . . . 6 ⊢ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥 |
15 | rabn0 4394 | . . . . . 6 ⊢ ({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Sℋ (𝐴 ∪ 𝐵) ⊆ 𝑥) | |
16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅ |
17 | shintcl 31358 | . . . . 5 ⊢ (({𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ Sℋ ∧ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ ) | |
18 | 9, 16, 17 | mp2an 692 | . . . 4 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∈ Sℋ |
19 | 7, 8, 18 | shslubi 31413 | . . 3 ⊢ ((𝐴 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ∧ 𝐵 ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) ↔ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) |
20 | 6, 19 | mpbi 230 | . 2 ⊢ (𝐴 +ℋ 𝐵) ⊆ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
21 | 12 | elrab 3694 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ↔ ((𝐴 +ℋ 𝐵) ∈ Sℋ ∧ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵))) |
22 | 10, 11, 21 | mpbir2an 711 | . . 3 ⊢ (𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
23 | intss1 4967 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ∈ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} → ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵)) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} ⊆ (𝐴 +ℋ 𝐵) |
25 | 20, 24 | eqssi 4011 | 1 ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∃wrex 3067 {crab 3432 ∪ cun 3960 ⊆ wss 3962 ∅c0 4338 ∩ cint 4950 (class class class)co 7430 Sℋ csh 30956 +ℋ cph 30959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 ax-hilex 31027 ax-hfvadd 31028 ax-hvcom 31029 ax-hvass 31030 ax-hv0cl 31031 ax-hvaddid 31032 ax-hfvmul 31033 ax-hvmulid 31034 ax-hvmulass 31035 ax-hvdistr1 31036 ax-hvdistr2 31037 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-icc 13390 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-topgen 17489 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-bases 22968 df-lm 23252 df-haus 23338 df-grpo 30521 df-gid 30522 df-ginv 30523 df-gdiv 30524 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-vs 30627 df-nmcv 30628 df-ims 30629 df-hnorm 30996 df-hvsub 30999 df-hlim 31000 df-sh 31235 df-ch 31249 df-ch0 31281 df-shs 31336 |
This theorem is referenced by: shsval3i 31416 |
Copyright terms: Public domain | W3C validator |