HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsval3i Structured version   Visualization version   GIF version

Theorem shsval3i 31301
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shlesb1.1 𝐴S
shlesb1.2 𝐵S
Assertion
Ref Expression
shsval3i (𝐴 + 𝐵) = (span‘(𝐴𝐵))

Proof of Theorem shsval3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 shlesb1.1 . . 3 𝐴S
2 shlesb1.2 . . 3 𝐵S
31, 2shsval2i 31300 . 2 (𝐴 + 𝐵) = {𝑥S ∣ (𝐴𝐵) ⊆ 𝑥}
41shssii 31126 . . . 4 𝐴 ⊆ ℋ
52shssii 31126 . . . 4 𝐵 ⊆ ℋ
64, 5unssi 4164 . . 3 (𝐴𝐵) ⊆ ℋ
7 spanval 31246 . . 3 ((𝐴𝐵) ⊆ ℋ → (span‘(𝐴𝐵)) = {𝑥S ∣ (𝐴𝐵) ⊆ 𝑥})
86, 7ax-mp 5 . 2 (span‘(𝐴𝐵)) = {𝑥S ∣ (𝐴𝐵) ⊆ 𝑥}
93, 8eqtr4i 2760 1 (𝐴 + 𝐵) = (span‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {crab 3413  cun 3922  wss 3924   cint 4919  cfv 6527  (class class class)co 7399  chba 30832   S csh 30841   + cph 30844  spancspn 30845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199  ax-addf 11200  ax-mulf 11201  ax-hilex 30912  ax-hfvadd 30913  ax-hvcom 30914  ax-hvass 30915  ax-hv0cl 30916  ax-hvaddid 30917  ax-hfvmul 30918  ax-hvmulid 30919  ax-hvmulass 30920  ax-hvdistr1 30921  ax-hvdistr2 30922  ax-hvmul0 30923  ax-hfi 30992  ax-his1 30995  ax-his2 30996  ax-his3 30997  ax-his4 30998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-n0 12494  df-z 12581  df-uz 12845  df-q 12957  df-rp 13001  df-xneg 13120  df-xadd 13121  df-xmul 13122  df-icc 13360  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-topgen 17442  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-top 22817  df-topon 22834  df-bases 22869  df-lm 23152  df-haus 23238  df-grpo 30406  df-gid 30407  df-ginv 30408  df-gdiv 30409  df-ablo 30458  df-vc 30472  df-nv 30505  df-va 30508  df-ba 30509  df-sm 30510  df-0v 30511  df-vs 30512  df-nmcv 30513  df-ims 30514  df-hnorm 30881  df-hvsub 30884  df-hlim 30885  df-sh 31120  df-ch 31134  df-ch0 31166  df-shs 31221  df-span 31222
This theorem is referenced by:  shs0i  31362
  Copyright terms: Public domain W3C validator