![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsval3i | Structured version Visualization version GIF version |
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shlesb1.1 | ⊢ 𝐴 ∈ Sℋ |
shlesb1.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shsval3i | ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shlesb1.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
2 | shlesb1.2 | . . 3 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shsval2i 28960 | . 2 ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
4 | 1 | shssii 28784 | . . . 4 ⊢ 𝐴 ⊆ ℋ |
5 | 2 | shssii 28784 | . . . 4 ⊢ 𝐵 ⊆ ℋ |
6 | 4, 5 | unssi 4043 | . . 3 ⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
7 | spanval 28906 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (span‘(𝐴 ∪ 𝐵)) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (span‘(𝐴 ∪ 𝐵)) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
9 | 3, 8 | eqtr4i 2798 | 1 ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∈ wcel 2051 {crab 3085 ∪ cun 3820 ⊆ wss 3822 ∩ cint 4745 ‘cfv 6185 (class class class)co 6974 ℋchba 28490 Sℋ csh 28499 +ℋ cph 28502 spancspn 28503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 ax-addf 10412 ax-mulf 10413 ax-hilex 28570 ax-hfvadd 28571 ax-hvcom 28572 ax-hvass 28573 ax-hv0cl 28574 ax-hvaddid 28575 ax-hfvmul 28576 ax-hvmulid 28577 ax-hvmulass 28578 ax-hvdistr1 28579 ax-hvdistr2 28580 ax-hvmul0 28581 ax-hfi 28650 ax-his1 28653 ax-his2 28654 ax-his3 28655 ax-his4 28656 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-map 8206 df-pm 8207 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-n0 11706 df-z 11792 df-uz 12057 df-q 12161 df-rp 12203 df-xneg 12322 df-xadd 12323 df-xmul 12324 df-icc 12559 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-topgen 16571 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-top 21221 df-topon 21238 df-bases 21273 df-lm 21556 df-haus 21642 df-grpo 28062 df-gid 28063 df-ginv 28064 df-gdiv 28065 df-ablo 28114 df-vc 28128 df-nv 28161 df-va 28164 df-ba 28165 df-sm 28166 df-0v 28167 df-vs 28168 df-nmcv 28169 df-ims 28170 df-hnorm 28539 df-hvsub 28542 df-hlim 28543 df-sh 28778 df-ch 28792 df-ch0 28824 df-shs 28881 df-span 28882 |
This theorem is referenced by: shs0i 29022 |
Copyright terms: Public domain | W3C validator |