| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcrcl | ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subc 17719 | . 2 ⊢ Subcat = (𝑐 ∈ Cat ↦ {ℎ ∣ (ℎ ⊆cat (Homf ‘𝑐) ∧ [dom dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) | |
| 2 | 1 | mptrcl 6939 | 1 ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2707 ∀wral 3044 [wsbc 3742 〈cop 4583 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 Subcatcsubc 17716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-subc 17719 |
| This theorem is referenced by: subcssc 17747 subcidcl 17751 subccocl 17752 subccatid 17753 subsubc 17760 funcres2b 17804 funcres2 17805 idfusubc 17807 iinfsubc 49043 |
| Copyright terms: Public domain | W3C validator |