MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcrcl Structured version   Visualization version   GIF version

Theorem subcrcl 17763
Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
subcrcl (𝐻 ∈ (Subcatβ€˜πΆ) β†’ 𝐢 ∈ Cat)

Proof of Theorem subcrcl
Dummy variables 𝑓 𝑐 𝑔 β„Ž 𝑠 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subc 17759 . 2 Subcat = (𝑐 ∈ Cat ↦ {β„Ž ∣ (β„Ž βŠ†cat (Homf β€˜π‘) ∧ [dom dom β„Ž / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯β„Žπ‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯β„Žπ‘¦)βˆ€π‘” ∈ (π‘¦β„Žπ‘§)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯β„Žπ‘§)))})
21mptrcl 7008 1 (𝐻 ∈ (Subcatβ€˜πΆ) β†’ 𝐢 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  [wsbc 3778  βŸ¨cop 4635   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544  (class class class)co 7409  compcco 17209  Catccat 17608  Idccid 17609  Homf chomf 17610   βŠ†cat cssc 17754  Subcatcsubc 17756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fv 6552  df-subc 17759
This theorem is referenced by:  subcssc  17790  subcidcl  17794  subccocl  17795  subccatid  17796  subsubc  17803  funcres2b  17847  funcres2  17848  idfusubc  46640
  Copyright terms: Public domain W3C validator