MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcrcl Structured version   Visualization version   GIF version

Theorem subcrcl 17718
Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
subcrcl (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)

Proof of Theorem subcrcl
Dummy variables 𝑓 𝑐 𝑔 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subc 17714 . 2 Subcat = (𝑐 ∈ Cat ↦ { ∣ (cat (Homf𝑐) ∧ [dom dom / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑧)))})
21mptrcl 6933 1 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  {cab 2709  wral 3047  [wsbc 3736  cop 4577   class class class wbr 5086  dom cdm 5611  cfv 6476  (class class class)co 7341  compcco 17168  Catccat 17565  Idccid 17566  Homf chomf 17567  cat cssc 17709  Subcatcsubc 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fv 6484  df-subc 17714
This theorem is referenced by:  subcssc  17742  subcidcl  17746  subccocl  17747  subccatid  17748  subsubc  17755  funcres2b  17799  funcres2  17800  idfusubc  17802  iinfsubc  49090
  Copyright terms: Public domain W3C validator