Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
subcrcl | ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-subc 17505 | . 2 ⊢ Subcat = (𝑐 ∈ Cat ↦ {ℎ ∣ (ℎ ⊆cat (Homf ‘𝑐) ∧ [dom dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) | |
2 | 1 | mptrcl 6878 | 1 ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2716 ∀wral 3065 [wsbc 3719 〈cop 4572 class class class wbr 5078 dom cdm 5588 ‘cfv 6430 (class class class)co 7268 compcco 16955 Catccat 17354 Idccid 17355 Homf chomf 17356 ⊆cat cssc 17500 Subcatcsubc 17502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fv 6438 df-subc 17505 |
This theorem is referenced by: subcssc 17536 subcidcl 17540 subccocl 17541 subccatid 17542 subsubc 17549 funcres2b 17593 funcres2 17594 idfusubc 45376 |
Copyright terms: Public domain | W3C validator |