MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc Structured version   Visualization version   GIF version

Theorem issubc 17791
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf β€˜πΆ)
issubc.i 1 = (Idβ€˜πΆ)
issubc.o Β· = (compβ€˜πΆ)
issubc.c (πœ‘ β†’ 𝐢 ∈ Cat)
issubc.s (πœ‘ β†’ 𝑆 = dom dom 𝐽)
Assertion
Ref Expression
issubc (πœ‘ β†’ (𝐽 ∈ (Subcatβ€˜πΆ) ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,π‘₯,𝑦,𝑧,𝐢   𝑓,𝐽,𝑔,π‘₯,𝑦,𝑧   𝑆,𝑓,𝑔,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑧,𝑓,𝑔)   Β· (π‘₯,𝑦,𝑧,𝑓,𝑔)   1 (π‘₯,𝑦,𝑧,𝑓,𝑔)   𝐻(π‘₯,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc
Dummy variables 𝑐 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubc.c . 2 (πœ‘ β†’ 𝐢 ∈ Cat)
2 issubc.s . 2 (πœ‘ β†’ 𝑆 = dom dom 𝐽)
3 simpl 481 . . . . 5 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ 𝐢 ∈ Cat)
4 sscpwex 17768 . . . . . . . 8 {𝑗 ∣ 𝑗 βŠ†cat (Homf β€˜π‘)} ∈ V
5 simpl 481 . . . . . . . . 9 ((𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧))) β†’ 𝑗 βŠ†cat (Homf β€˜π‘))
65ss2abi 4064 . . . . . . . 8 {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} βŠ† {𝑗 ∣ 𝑗 βŠ†cat (Homf β€˜π‘)}
74, 6ssexi 5323 . . . . . . 7 {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ∈ V
87csbex 5312 . . . . . 6 ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ∈ V
98a1i 11 . . . . 5 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ∈ V)
10 df-subc 17765 . . . . . 6 Subcat = (𝑐 ∈ Cat ↦ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))})
1110fvmpts 7002 . . . . 5 ((𝐢 ∈ Cat ∧ ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ∈ V) β†’ (Subcatβ€˜πΆ) = ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))})
123, 9, 11syl2anc 582 . . . 4 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ (Subcatβ€˜πΆ) = ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))})
1312eleq2d 2817 . . 3 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ (𝐽 ∈ (Subcatβ€˜πΆ) ↔ 𝐽 ∈ ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))}))
14 sbcel2 4416 . . . 4 ([𝐢 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ↔ 𝐽 ∈ ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))})
1514a1i 11 . . 3 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ ([𝐢 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ↔ 𝐽 ∈ ⦋𝐢 / π‘β¦Œ{𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))}))
16 elex 3491 . . . . . 6 (𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} β†’ 𝐽 ∈ V)
1716a1i 11 . . . . 5 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ (𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} β†’ 𝐽 ∈ V))
18 sscrel 17766 . . . . . . . 8 Rel βŠ†cat
1918brrelex1i 5733 . . . . . . 7 (𝐽 βŠ†cat 𝐻 β†’ 𝐽 ∈ V)
2019adantr 479 . . . . . 6 ((𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧))) β†’ 𝐽 ∈ V)
2120a1i 11 . . . . 5 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ ((𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧))) β†’ 𝐽 ∈ V))
22 df-sbc 3779 . . . . . . 7 ([𝐽 / 𝑗](𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧))) ↔ 𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))})
23 simpr 483 . . . . . . . 8 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝐽 ∈ V) β†’ 𝐽 ∈ V)
24 simpr 483 . . . . . . . . . . 11 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ 𝑗 = 𝐽)
25 simpr 483 . . . . . . . . . . . . . 14 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ 𝑐 = 𝐢)
2625fveq2d 6896 . . . . . . . . . . . . 13 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ (Homf β€˜π‘) = (Homf β€˜πΆ))
27 issubc.h . . . . . . . . . . . . 13 𝐻 = (Homf β€˜πΆ)
2826, 27eqtr4di 2788 . . . . . . . . . . . 12 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ (Homf β€˜π‘) = 𝐻)
2928adantr 479 . . . . . . . . . . 11 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ (Homf β€˜π‘) = 𝐻)
3024, 29breq12d 5162 . . . . . . . . . 10 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ (𝑗 βŠ†cat (Homf β€˜π‘) ↔ 𝐽 βŠ†cat 𝐻))
31 vex 3476 . . . . . . . . . . . . . 14 𝑗 ∈ V
3231dmex 7906 . . . . . . . . . . . . 13 dom 𝑗 ∈ V
3332dmex 7906 . . . . . . . . . . . 12 dom dom 𝑗 ∈ V
3433a1i 11 . . . . . . . . . . 11 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ dom dom 𝑗 ∈ V)
3524dmeqd 5906 . . . . . . . . . . . . 13 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ dom 𝑗 = dom 𝐽)
3635dmeqd 5906 . . . . . . . . . . . 12 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ dom dom 𝑗 = dom dom 𝐽)
37 simpllr 772 . . . . . . . . . . . 12 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ 𝑆 = dom dom 𝐽)
3836, 37eqtr4d 2773 . . . . . . . . . . 11 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ dom dom 𝑗 = 𝑆)
39 simpr 483 . . . . . . . . . . . 12 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ 𝑠 = 𝑆)
40 simpllr 772 . . . . . . . . . . . . . . . . 17 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ 𝑐 = 𝐢)
4140fveq2d 6896 . . . . . . . . . . . . . . . 16 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (Idβ€˜π‘) = (Idβ€˜πΆ))
42 issubc.i . . . . . . . . . . . . . . . 16 1 = (Idβ€˜πΆ)
4341, 42eqtr4di 2788 . . . . . . . . . . . . . . 15 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (Idβ€˜π‘) = 1 )
4443fveq1d 6894 . . . . . . . . . . . . . 14 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ ((Idβ€˜π‘)β€˜π‘₯) = ( 1 β€˜π‘₯))
45 simplr 765 . . . . . . . . . . . . . . 15 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ 𝑗 = 𝐽)
4645oveqd 7430 . . . . . . . . . . . . . 14 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (π‘₯𝑗π‘₯) = (π‘₯𝐽π‘₯))
4744, 46eleq12d 2825 . . . . . . . . . . . . 13 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ↔ ( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯)))
4845oveqd 7430 . . . . . . . . . . . . . . . 16 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (π‘₯𝑗𝑦) = (π‘₯𝐽𝑦))
4945oveqd 7430 . . . . . . . . . . . . . . . . 17 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (𝑦𝑗𝑧) = (𝑦𝐽𝑧))
5040fveq2d 6896 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (compβ€˜π‘) = (compβ€˜πΆ))
51 issubc.o . . . . . . . . . . . . . . . . . . . . 21 Β· = (compβ€˜πΆ)
5250, 51eqtr4di 2788 . . . . . . . . . . . . . . . . . . . 20 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (compβ€˜π‘) = Β· )
5352oveqd 7430 . . . . . . . . . . . . . . . . . . 19 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧) = (⟨π‘₯, π‘¦βŸ© Β· 𝑧))
5453oveqd 7430 . . . . . . . . . . . . . . . . . 18 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓))
5545oveqd 7430 . . . . . . . . . . . . . . . . . 18 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (π‘₯𝑗𝑧) = (π‘₯𝐽𝑧))
5654, 55eleq12d 2825 . . . . . . . . . . . . . . . . 17 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ ((𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧) ↔ (𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))
5749, 56raleqbidv 3340 . . . . . . . . . . . . . . . 16 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧) ↔ βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))
5848, 57raleqbidv 3340 . . . . . . . . . . . . . . 15 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧) ↔ βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))
5939, 58raleqbidv 3340 . . . . . . . . . . . . . 14 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧) ↔ βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))
6039, 59raleqbidv 3340 . . . . . . . . . . . . 13 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧) ↔ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))
6147, 60anbi12d 629 . . . . . . . . . . . 12 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ ((((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)) ↔ (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧))))
6239, 61raleqbidv 3340 . . . . . . . . . . 11 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) β†’ (βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)) ↔ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧))))
6334, 38, 62sbcied2 3825 . . . . . . . . . 10 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ ([dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)) ↔ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧))))
6430, 63anbi12d 629 . . . . . . . . 9 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝑗 = 𝐽) β†’ ((𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧))) ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
6564adantlr 711 . . . . . . . 8 (((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝐽 ∈ V) ∧ 𝑗 = 𝐽) β†’ ((𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧))) ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
6623, 65sbcied 3823 . . . . . . 7 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝐽 ∈ V) β†’ ([𝐽 / 𝑗](𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧))) ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
6722, 66bitr3id 284 . . . . . 6 ((((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) ∧ 𝐽 ∈ V) β†’ (𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
6867ex 411 . . . . 5 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ (𝐽 ∈ V β†’ (𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧))))))
6917, 21, 68pm5.21ndd 378 . . . 4 (((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐢) β†’ (𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
703, 69sbcied 3823 . . 3 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ ([𝐢 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗 βŠ†cat (Homf β€˜π‘) ∧ [dom dom 𝑗 / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯𝑗π‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯𝑗𝑦)βˆ€π‘” ∈ (𝑦𝑗𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯𝑗𝑧)))} ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
7113, 15, 703bitr2d 306 . 2 ((𝐢 ∈ Cat ∧ 𝑆 = dom dom 𝐽) β†’ (𝐽 ∈ (Subcatβ€˜πΆ) ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
721, 2, 71syl2anc 582 1 (πœ‘ β†’ (𝐽 ∈ (Subcatβ€˜πΆ) ↔ (𝐽 βŠ†cat 𝐻 ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ© Β· 𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  {cab 2707  βˆ€wral 3059  Vcvv 3472  [wsbc 3778  β¦‹csb 3894  βŸ¨cop 4635   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544  (class class class)co 7413  compcco 17215  Catccat 17614  Idccid 17615  Homf chomf 17616   βŠ†cat cssc 17760  Subcatcsubc 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-pm 8827  df-ixp 8896  df-ssc 17763  df-subc 17765
This theorem is referenced by:  issubc2  17792  subcssc  17796
  Copyright terms: Public domain W3C validator