MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc Structured version   Visualization version   GIF version

Theorem issubc 17804
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc.s (𝜑𝑆 = dom dom 𝐽)
Assertion
Ref Expression
issubc (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc
Dummy variables 𝑐 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubc.c . 2 (𝜑𝐶 ∈ Cat)
2 issubc.s . 2 (𝜑𝑆 = dom dom 𝐽)
3 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 ∈ Cat)
4 sscpwex 17784 . . . . . . . 8 {𝑗𝑗cat (Homf𝑐)} ∈ V
5 simpl 482 . . . . . . . . 9 ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) → 𝑗cat (Homf𝑐))
65ss2abi 4033 . . . . . . . 8 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ⊆ {𝑗𝑗cat (Homf𝑐)}
74, 6ssexi 5280 . . . . . . 7 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
87csbex 5269 . . . . . 6 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
98a1i 11 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V)
10 df-subc 17781 . . . . . 6 Subcat = (𝑐 ∈ Cat ↦ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1110fvmpts 6974 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
123, 9, 11syl2anc 584 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1312eleq2d 2815 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
14 sbcel2 4384 . . . 4 ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1514a1i 11 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
16 elex 3471 . . . . . 6 (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V)
1716a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V))
18 sscrel 17782 . . . . . . . 8 Rel ⊆cat
1918brrelex1i 5697 . . . . . . 7 (𝐽cat 𝐻𝐽 ∈ V)
2019adantr 480 . . . . . 6 ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V)
2120a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V))
22 df-sbc 3757 . . . . . . 7 ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ 𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
23 simpr 484 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → 𝐽 ∈ V)
24 simpr 484 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
25 simpr 484 . . . . . . . . . . . . . 14 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶)
2625fveq2d 6865 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
27 issubc.h . . . . . . . . . . . . 13 𝐻 = (Homf𝐶)
2826, 27eqtr4di 2783 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = 𝐻)
2928adantr 480 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (Homf𝑐) = 𝐻)
3024, 29breq12d 5123 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (𝑗cat (Homf𝑐) ↔ 𝐽cat 𝐻))
31 vex 3454 . . . . . . . . . . . . . 14 𝑗 ∈ V
3231dmex 7888 . . . . . . . . . . . . 13 dom 𝑗 ∈ V
3332dmex 7888 . . . . . . . . . . . 12 dom dom 𝑗 ∈ V
3433a1i 11 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 ∈ V)
3524dmeqd 5872 . . . . . . . . . . . . 13 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom 𝑗 = dom 𝐽)
3635dmeqd 5872 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = dom dom 𝐽)
37 simpllr 775 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑆 = dom dom 𝐽)
3836, 37eqtr4d 2768 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = 𝑆)
39 simpr 484 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
40 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑐 = 𝐶)
4140fveq2d 6865 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = (Id‘𝐶))
42 issubc.i . . . . . . . . . . . . . . . 16 1 = (Id‘𝐶)
4341, 42eqtr4di 2783 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = 1 )
4443fveq1d 6863 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
45 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑗 = 𝐽)
4645oveqd 7407 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
4744, 46eleq12d 2823 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ( 1𝑥) ∈ (𝑥𝐽𝑥)))
4845oveqd 7407 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑦) = (𝑥𝐽𝑦))
4945oveqd 7407 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑦𝑗𝑧) = (𝑦𝐽𝑧))
5040fveq2d 6865 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = (comp‘𝐶))
51 issubc.o . . . . . . . . . . . . . . . . . . . . 21 · = (comp‘𝐶)
5250, 51eqtr4di 2783 . . . . . . . . . . . . . . . . . . . 20 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = · )
5352oveqd 7407 . . . . . . . . . . . . . . . . . . 19 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧) = (⟨𝑥, 𝑦· 𝑧))
5453oveqd 7407 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
5545oveqd 7407 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑧) = (𝑥𝐽𝑧))
5654, 55eleq12d 2823 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5749, 56raleqbidv 3321 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5848, 57raleqbidv 3321 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5939, 58raleqbidv 3321 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6039, 59raleqbidv 3321 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6147, 60anbi12d 632 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6239, 61raleqbidv 3321 . . . . . . . . . . 11 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6334, 38, 62sbcied2 3801 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ([dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6430, 63anbi12d 632 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6564adantlr 715 . . . . . . . 8 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6623, 65sbcied 3800 . . . . . . 7 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6722, 66bitr3id 285 . . . . . 6 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6867ex 412 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ V → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
6917, 21, 68pm5.21ndd 379 . . . 4 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
703, 69sbcied 3800 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
7113, 15, 703bitr2d 307 . 2 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
721, 2, 71syl2anc 584 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  [wsbc 3756  csb 3865  cop 4598   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  compcco 17239  Catccat 17632  Idccid 17633  Homf chomf 17634  cat cssc 17776  Subcatcsubc 17778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pm 8805  df-ixp 8874  df-ssc 17779  df-subc 17781
This theorem is referenced by:  issubc2  17805  subcssc  17809
  Copyright terms: Public domain W3C validator