MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc Structured version   Visualization version   GIF version

Theorem issubc 17097
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc.s (𝜑𝑆 = dom dom 𝐽)
Assertion
Ref Expression
issubc (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc
Dummy variables 𝑐 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubc.c . 2 (𝜑𝐶 ∈ Cat)
2 issubc.s . 2 (𝜑𝑆 = dom dom 𝐽)
3 simpl 483 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 ∈ Cat)
4 sscpwex 17077 . . . . . . . 8 {𝑗𝑗cat (Homf𝑐)} ∈ V
5 simpl 483 . . . . . . . . 9 ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) → 𝑗cat (Homf𝑐))
65ss2abi 4046 . . . . . . . 8 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ⊆ {𝑗𝑗cat (Homf𝑐)}
74, 6ssexi 5222 . . . . . . 7 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
87csbex 5211 . . . . . 6 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
98a1i 11 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V)
10 df-subc 17074 . . . . . 6 Subcat = (𝑐 ∈ Cat ↦ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1110fvmpts 6767 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
123, 9, 11syl2anc 584 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1312eleq2d 2902 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
14 sbcel2 4370 . . . 4 ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1514a1i 11 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
16 elex 3517 . . . . . 6 (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V)
1716a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V))
18 sscrel 17075 . . . . . . . 8 Rel ⊆cat
1918brrelex1i 5606 . . . . . . 7 (𝐽cat 𝐻𝐽 ∈ V)
2019adantr 481 . . . . . 6 ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V)
2120a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V))
22 df-sbc 3776 . . . . . . 7 ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ 𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
23 simpr 485 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → 𝐽 ∈ V)
24 simpr 485 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
25 simpr 485 . . . . . . . . . . . . . 14 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶)
2625fveq2d 6670 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
27 issubc.h . . . . . . . . . . . . 13 𝐻 = (Homf𝐶)
2826, 27syl6eqr 2878 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = 𝐻)
2928adantr 481 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (Homf𝑐) = 𝐻)
3024, 29breq12d 5075 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (𝑗cat (Homf𝑐) ↔ 𝐽cat 𝐻))
31 vex 3502 . . . . . . . . . . . . . 14 𝑗 ∈ V
3231dmex 7607 . . . . . . . . . . . . 13 dom 𝑗 ∈ V
3332dmex 7607 . . . . . . . . . . . 12 dom dom 𝑗 ∈ V
3433a1i 11 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 ∈ V)
3524dmeqd 5772 . . . . . . . . . . . . 13 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom 𝑗 = dom 𝐽)
3635dmeqd 5772 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = dom dom 𝐽)
37 simpllr 772 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑆 = dom dom 𝐽)
3836, 37eqtr4d 2863 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = 𝑆)
39 simpr 485 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
40 simpllr 772 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑐 = 𝐶)
4140fveq2d 6670 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = (Id‘𝐶))
42 issubc.i . . . . . . . . . . . . . . . 16 1 = (Id‘𝐶)
4341, 42syl6eqr 2878 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = 1 )
4443fveq1d 6668 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
45 simplr 765 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑗 = 𝐽)
4645oveqd 7168 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
4744, 46eleq12d 2911 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ( 1𝑥) ∈ (𝑥𝐽𝑥)))
4845oveqd 7168 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑦) = (𝑥𝐽𝑦))
4945oveqd 7168 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑦𝑗𝑧) = (𝑦𝐽𝑧))
5040fveq2d 6670 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = (comp‘𝐶))
51 issubc.o . . . . . . . . . . . . . . . . . . . . 21 · = (comp‘𝐶)
5250, 51syl6eqr 2878 . . . . . . . . . . . . . . . . . . . 20 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = · )
5352oveqd 7168 . . . . . . . . . . . . . . . . . . 19 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧) = (⟨𝑥, 𝑦· 𝑧))
5453oveqd 7168 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
5545oveqd 7168 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑧) = (𝑥𝐽𝑧))
5654, 55eleq12d 2911 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5749, 56raleqbidv 3406 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5848, 57raleqbidv 3406 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5939, 58raleqbidv 3406 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6039, 59raleqbidv 3406 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6147, 60anbi12d 630 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6239, 61raleqbidv 3406 . . . . . . . . . . 11 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6334, 38, 62sbcied2 3818 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ([dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6430, 63anbi12d 630 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6564adantlr 711 . . . . . . . 8 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6623, 65sbcied 3817 . . . . . . 7 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6722, 66syl5bbr 286 . . . . . 6 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6867ex 413 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ V → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
6917, 21, 68pm5.21ndd 381 . . . 4 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
703, 69sbcied 3817 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
7113, 15, 703bitr2d 308 . 2 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
721, 2, 71syl2anc 584 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  {cab 2803  wral 3142  Vcvv 3499  [wsbc 3775  csb 3886  cop 4569   class class class wbr 5062  dom cdm 5553  cfv 6351  (class class class)co 7151  compcco 16569  Catccat 16927  Idccid 16928  Homf chomf 16929  cat cssc 17069  Subcatcsubc 17071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-pm 8402  df-ixp 8454  df-ssc 17072  df-subc 17074
This theorem is referenced by:  issubc2  17098  subcssc  17102
  Copyright terms: Public domain W3C validator