Step | Hyp | Ref
| Expression |
1 | | issubc.c |
. 2
β’ (π β πΆ β Cat) |
2 | | issubc.s |
. 2
β’ (π β π = dom dom π½) |
3 | | simpl 481 |
. . . . 5
β’ ((πΆ β Cat β§ π = dom dom π½) β πΆ β Cat) |
4 | | sscpwex 17768 |
. . . . . . . 8
β’ {π β£ π βcat
(Homf βπ)} β V |
5 | | simpl 481 |
. . . . . . . . 9
β’ ((π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§))) β π βcat
(Homf βπ)) |
6 | 5 | ss2abi 4064 |
. . . . . . . 8
β’ {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β {π β£ π βcat
(Homf βπ)} |
7 | 4, 6 | ssexi 5323 |
. . . . . . 7
β’ {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β V |
8 | 7 | csbex 5312 |
. . . . . 6
β’
β¦πΆ /
πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β V |
9 | 8 | a1i 11 |
. . . . 5
β’ ((πΆ β Cat β§ π = dom dom π½) β β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β V) |
10 | | df-subc 17765 |
. . . . . 6
β’ Subcat =
(π β Cat β¦
{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))}) |
11 | 10 | fvmpts 7002 |
. . . . 5
β’ ((πΆ β Cat β§
β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β V) β (SubcatβπΆ) = β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))}) |
12 | 3, 9, 11 | syl2anc 582 |
. . . 4
β’ ((πΆ β Cat β§ π = dom dom π½) β (SubcatβπΆ) = β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))}) |
13 | 12 | eleq2d 2817 |
. . 3
β’ ((πΆ β Cat β§ π = dom dom π½) β (π½ β (SubcatβπΆ) β π½ β β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))})) |
14 | | sbcel2 4416 |
. . . 4
β’
([πΆ / π]π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β π½ β β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))}) |
15 | 14 | a1i 11 |
. . 3
β’ ((πΆ β Cat β§ π = dom dom π½) β ([πΆ / π]π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β π½ β β¦πΆ / πβ¦{π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))})) |
16 | | elex 3491 |
. . . . . 6
β’ (π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β π½ β V) |
17 | 16 | a1i 11 |
. . . . 5
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β (π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β π½ β V)) |
18 | | sscrel 17766 |
. . . . . . . 8
β’ Rel
βcat |
19 | 18 | brrelex1i 5733 |
. . . . . . 7
β’ (π½ βcat π» β π½ β V) |
20 | 19 | adantr 479 |
. . . . . 6
β’ ((π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) β π½ β V) |
21 | 20 | a1i 11 |
. . . . 5
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β ((π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) β π½ β V)) |
22 | | df-sbc 3779 |
. . . . . . 7
β’
([π½ / π](π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§))) β π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))}) |
23 | | simpr 483 |
. . . . . . . 8
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π½ β V) β π½ β V) |
24 | | simpr 483 |
. . . . . . . . . . 11
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β π = π½) |
25 | | simpr 483 |
. . . . . . . . . . . . . 14
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β π = πΆ) |
26 | 25 | fveq2d 6896 |
. . . . . . . . . . . . 13
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β (Homf
βπ) =
(Homf βπΆ)) |
27 | | issubc.h |
. . . . . . . . . . . . 13
β’ π» = (Homf
βπΆ) |
28 | 26, 27 | eqtr4di 2788 |
. . . . . . . . . . . 12
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β (Homf
βπ) = π») |
29 | 28 | adantr 479 |
. . . . . . . . . . 11
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β (Homf
βπ) = π») |
30 | 24, 29 | breq12d 5162 |
. . . . . . . . . 10
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β (π βcat
(Homf βπ) β π½ βcat π»)) |
31 | | vex 3476 |
. . . . . . . . . . . . . 14
β’ π β V |
32 | 31 | dmex 7906 |
. . . . . . . . . . . . 13
β’ dom π β V |
33 | 32 | dmex 7906 |
. . . . . . . . . . . 12
β’ dom dom
π β V |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β dom dom π β V) |
35 | 24 | dmeqd 5906 |
. . . . . . . . . . . . 13
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β dom π = dom π½) |
36 | 35 | dmeqd 5906 |
. . . . . . . . . . . 12
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β dom dom π = dom dom π½) |
37 | | simpllr 772 |
. . . . . . . . . . . 12
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β π = dom dom π½) |
38 | 36, 37 | eqtr4d 2773 |
. . . . . . . . . . 11
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β dom dom π = π) |
39 | | simpr 483 |
. . . . . . . . . . . 12
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β π = π) |
40 | | simpllr 772 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β π = πΆ) |
41 | 40 | fveq2d 6896 |
. . . . . . . . . . . . . . . 16
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (Idβπ) = (IdβπΆ)) |
42 | | issubc.i |
. . . . . . . . . . . . . . . 16
β’ 1 =
(IdβπΆ) |
43 | 41, 42 | eqtr4di 2788 |
. . . . . . . . . . . . . . 15
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (Idβπ) = 1 ) |
44 | 43 | fveq1d 6894 |
. . . . . . . . . . . . . 14
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β ((Idβπ)βπ₯) = ( 1 βπ₯)) |
45 | | simplr 765 |
. . . . . . . . . . . . . . 15
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β π = π½) |
46 | 45 | oveqd 7430 |
. . . . . . . . . . . . . 14
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (π₯ππ₯) = (π₯π½π₯)) |
47 | 44, 46 | eleq12d 2825 |
. . . . . . . . . . . . 13
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (((Idβπ)βπ₯) β (π₯ππ₯) β ( 1 βπ₯) β (π₯π½π₯))) |
48 | 45 | oveqd 7430 |
. . . . . . . . . . . . . . . 16
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (π₯ππ¦) = (π₯π½π¦)) |
49 | 45 | oveqd 7430 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (π¦ππ§) = (π¦π½π§)) |
50 | 40 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (compβπ) = (compβπΆ)) |
51 | | issubc.o |
. . . . . . . . . . . . . . . . . . . . 21
β’ Β· =
(compβπΆ) |
52 | 50, 51 | eqtr4di 2788 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (compβπ) = Β· ) |
53 | 52 | oveqd 7430 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (β¨π₯, π¦β©(compβπ)π§) = (β¨π₯, π¦β© Β· π§)) |
54 | 53 | oveqd 7430 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (π(β¨π₯, π¦β©(compβπ)π§)π) = (π(β¨π₯, π¦β© Β· π§)π)) |
55 | 45 | oveqd 7430 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (π₯ππ§) = (π₯π½π§)) |
56 | 54, 55 | eleq12d 2825 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β ((π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§) β (π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) |
57 | 49, 56 | raleqbidv 3340 |
. . . . . . . . . . . . . . . 16
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§) β βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) |
58 | 48, 57 | raleqbidv 3340 |
. . . . . . . . . . . . . . 15
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§) β βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) |
59 | 39, 58 | raleqbidv 3340 |
. . . . . . . . . . . . . 14
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§) β βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) |
60 | 39, 59 | raleqbidv 3340 |
. . . . . . . . . . . . 13
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§) β βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))) |
61 | 47, 60 | anbi12d 629 |
. . . . . . . . . . . 12
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β ((((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)) β (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§)))) |
62 | 39, 61 | raleqbidv 3340 |
. . . . . . . . . . 11
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β§ π = π) β (βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)) β βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§)))) |
63 | 34, 38, 62 | sbcied2 3825 |
. . . . . . . . . 10
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β ([dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)) β βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§)))) |
64 | 30, 63 | anbi12d 629 |
. . . . . . . . 9
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π = π½) β ((π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§))) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
65 | 64 | adantlr 711 |
. . . . . . . 8
β’
(((((πΆ β Cat
β§ π = dom dom π½) β§ π = πΆ) β§ π½ β V) β§ π = π½) β ((π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§))) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
66 | 23, 65 | sbcied 3823 |
. . . . . . 7
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π½ β V) β ([π½ / π](π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§))) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
67 | 22, 66 | bitr3id 284 |
. . . . . 6
β’ ((((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β§ π½ β V) β (π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
68 | 67 | ex 411 |
. . . . 5
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β (π½ β V β (π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§)))))) |
69 | 17, 21, 68 | pm5.21ndd 378 |
. . . 4
β’ (((πΆ β Cat β§ π = dom dom π½) β§ π = πΆ) β (π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
70 | 3, 69 | sbcied 3823 |
. . 3
β’ ((πΆ β Cat β§ π = dom dom π½) β ([πΆ / π]π½ β {π β£ (π βcat
(Homf βπ) β§ [dom dom π / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯ππ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯ππ¦)βπ β (π¦ππ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯ππ§)))} β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
71 | 13, 15, 70 | 3bitr2d 306 |
. 2
β’ ((πΆ β Cat β§ π = dom dom π½) β (π½ β (SubcatβπΆ) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
72 | 1, 2, 71 | syl2anc 582 |
1
β’ (π β (π½ β (SubcatβπΆ) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |