Step | Hyp | Ref
| Expression |
1 | | issubc.c |
. 2
⊢ (𝜑 → 𝐶 ∈ Cat) |
2 | | issubc.s |
. 2
⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
3 | | simpl 482 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 ∈ Cat) |
4 | | sscpwex 17444 |
. . . . . . . 8
⊢ {𝑗 ∣ 𝑗 ⊆cat
(Homf ‘𝑐)} ∈ V |
5 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) → 𝑗 ⊆cat
(Homf ‘𝑐)) |
6 | 5 | ss2abi 3996 |
. . . . . . . 8
⊢ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ⊆ {𝑗 ∣ 𝑗 ⊆cat
(Homf ‘𝑐)} |
7 | 4, 6 | ssexi 5241 |
. . . . . . 7
⊢ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V |
8 | 7 | csbex 5230 |
. . . . . 6
⊢
⦋𝐶 /
𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V) |
10 | | df-subc 17441 |
. . . . . 6
⊢ Subcat =
(𝑐 ∈ Cat ↦
{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}) |
11 | 10 | fvmpts 6860 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧
⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V) → (Subcat‘𝐶) = ⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}) |
12 | 3, 9, 11 | syl2anc 583 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (Subcat‘𝐶) = ⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}) |
13 | 12 | eleq2d 2824 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ 𝐽 ∈ ⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})) |
14 | | sbcel2 4346 |
. . . 4
⊢
([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽 ∈ ⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}) |
15 | 14 | a1i 11 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽 ∈ ⦋𝐶 / 𝑐⦌{𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})) |
16 | | elex 3440 |
. . . . . 6
⊢ (𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V)) |
18 | | sscrel 17442 |
. . . . . . . 8
⊢ Rel
⊆cat |
19 | 18 | brrelex1i 5634 |
. . . . . . 7
⊢ (𝐽 ⊆cat 𝐻 → 𝐽 ∈ V) |
20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V) |
21 | 20 | a1i 11 |
. . . . 5
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → ((𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V)) |
22 | | df-sbc 3712 |
. . . . . . 7
⊢
([𝐽 / 𝑗](𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ 𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}) |
23 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → 𝐽 ∈ V) |
24 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) |
25 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) |
26 | 25 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf
‘𝑐) =
(Homf ‘𝐶)) |
27 | | issubc.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (Homf
‘𝐶) |
28 | 26, 27 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf
‘𝑐) = 𝐻) |
29 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (Homf
‘𝑐) = 𝐻) |
30 | 24, 29 | breq12d 5083 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (𝑗 ⊆cat
(Homf ‘𝑐) ↔ 𝐽 ⊆cat 𝐻)) |
31 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑗 ∈ V |
32 | 31 | dmex 7732 |
. . . . . . . . . . . . 13
⊢ dom 𝑗 ∈ V |
33 | 32 | dmex 7732 |
. . . . . . . . . . . 12
⊢ dom dom
𝑗 ∈ V |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 ∈ V) |
35 | 24 | dmeqd 5803 |
. . . . . . . . . . . . 13
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom 𝑗 = dom 𝐽) |
36 | 35 | dmeqd 5803 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = dom dom 𝐽) |
37 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑆 = dom dom 𝐽) |
38 | 36, 37 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = 𝑆) |
39 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
40 | | simpllr 772 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑐 = 𝐶) |
41 | 40 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = (Id‘𝐶)) |
42 | | issubc.i |
. . . . . . . . . . . . . . . 16
⊢ 1 =
(Id‘𝐶) |
43 | 41, 42 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = 1 ) |
44 | 43 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
45 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑗 = 𝐽) |
46 | 45 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑥) = (𝑥𝐽𝑥)) |
47 | 44, 46 | eleq12d 2833 |
. . . . . . . . . . . . 13
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥))) |
48 | 45 | oveqd 7272 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑦) = (𝑥𝐽𝑦)) |
49 | 45 | oveqd 7272 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑦𝑗𝑧) = (𝑦𝐽𝑧)) |
50 | 40 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = (comp‘𝐶)) |
51 | | issubc.o |
. . . . . . . . . . . . . . . . . . . . 21
⊢ · =
(comp‘𝐶) |
52 | 50, 51 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = · ) |
53 | 52 | oveqd 7272 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (〈𝑥, 𝑦〉(comp‘𝑐)𝑧) = (〈𝑥, 𝑦〉 · 𝑧)) |
54 | 53 | oveqd 7272 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)) |
55 | 45 | oveqd 7272 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑧) = (𝑥𝐽𝑧)) |
56 | 54, 55 | eleq12d 2833 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
57 | 49, 56 | raleqbidv 3327 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
58 | 48, 57 | raleqbidv 3327 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
59 | 39, 58 | raleqbidv 3327 |
. . . . . . . . . . . . . 14
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
60 | 39, 59 | raleqbidv 3327 |
. . . . . . . . . . . . 13
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
61 | 47, 60 | anbi12d 630 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
62 | 39, 61 | raleqbidv 3327 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
63 | 34, 38, 62 | sbcied2 3758 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ([dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
64 | 30, 63 | anbi12d 630 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ((𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
65 | 64 | adantlr 711 |
. . . . . . . 8
⊢
(((((𝐶 ∈ Cat
∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) ∧ 𝑗 = 𝐽) → ((𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
66 | 23, 65 | sbcied 3756 |
. . . . . . 7
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → ([𝐽 / 𝑗](𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
67 | 22, 66 | bitr3id 284 |
. . . . . 6
⊢ ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → (𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
68 | 67 | ex 412 |
. . . . 5
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ V → (𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))) |
69 | 17, 21, 68 | pm5.21ndd 380 |
. . . 4
⊢ (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
70 | 3, 69 | sbcied 3756 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ [dom dom 𝑗 / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
71 | 13, 15, 70 | 3bitr2d 306 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
72 | 1, 2, 71 | syl2anc 583 |
1
⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |