MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc Structured version   Visualization version   GIF version

Theorem issubc 17797
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc.s (𝜑𝑆 = dom dom 𝐽)
Assertion
Ref Expression
issubc (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc
Dummy variables 𝑐 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubc.c . 2 (𝜑𝐶 ∈ Cat)
2 issubc.s . 2 (𝜑𝑆 = dom dom 𝐽)
3 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 ∈ Cat)
4 sscpwex 17777 . . . . . . . 8 {𝑗𝑗cat (Homf𝑐)} ∈ V
5 simpl 482 . . . . . . . . 9 ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) → 𝑗cat (Homf𝑐))
65ss2abi 4030 . . . . . . . 8 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ⊆ {𝑗𝑗cat (Homf𝑐)}
74, 6ssexi 5277 . . . . . . 7 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
87csbex 5266 . . . . . 6 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
98a1i 11 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V)
10 df-subc 17774 . . . . . 6 Subcat = (𝑐 ∈ Cat ↦ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1110fvmpts 6971 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
123, 9, 11syl2anc 584 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1312eleq2d 2814 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
14 sbcel2 4381 . . . 4 ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1514a1i 11 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
16 elex 3468 . . . . . 6 (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V)
1716a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V))
18 sscrel 17775 . . . . . . . 8 Rel ⊆cat
1918brrelex1i 5694 . . . . . . 7 (𝐽cat 𝐻𝐽 ∈ V)
2019adantr 480 . . . . . 6 ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V)
2120a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V))
22 df-sbc 3754 . . . . . . 7 ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ 𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
23 simpr 484 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → 𝐽 ∈ V)
24 simpr 484 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
25 simpr 484 . . . . . . . . . . . . . 14 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶)
2625fveq2d 6862 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
27 issubc.h . . . . . . . . . . . . 13 𝐻 = (Homf𝐶)
2826, 27eqtr4di 2782 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = 𝐻)
2928adantr 480 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (Homf𝑐) = 𝐻)
3024, 29breq12d 5120 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (𝑗cat (Homf𝑐) ↔ 𝐽cat 𝐻))
31 vex 3451 . . . . . . . . . . . . . 14 𝑗 ∈ V
3231dmex 7885 . . . . . . . . . . . . 13 dom 𝑗 ∈ V
3332dmex 7885 . . . . . . . . . . . 12 dom dom 𝑗 ∈ V
3433a1i 11 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 ∈ V)
3524dmeqd 5869 . . . . . . . . . . . . 13 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom 𝑗 = dom 𝐽)
3635dmeqd 5869 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = dom dom 𝐽)
37 simpllr 775 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑆 = dom dom 𝐽)
3836, 37eqtr4d 2767 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = 𝑆)
39 simpr 484 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
40 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑐 = 𝐶)
4140fveq2d 6862 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = (Id‘𝐶))
42 issubc.i . . . . . . . . . . . . . . . 16 1 = (Id‘𝐶)
4341, 42eqtr4di 2782 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = 1 )
4443fveq1d 6860 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
45 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑗 = 𝐽)
4645oveqd 7404 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
4744, 46eleq12d 2822 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ( 1𝑥) ∈ (𝑥𝐽𝑥)))
4845oveqd 7404 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑦) = (𝑥𝐽𝑦))
4945oveqd 7404 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑦𝑗𝑧) = (𝑦𝐽𝑧))
5040fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = (comp‘𝐶))
51 issubc.o . . . . . . . . . . . . . . . . . . . . 21 · = (comp‘𝐶)
5250, 51eqtr4di 2782 . . . . . . . . . . . . . . . . . . . 20 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = · )
5352oveqd 7404 . . . . . . . . . . . . . . . . . . 19 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧) = (⟨𝑥, 𝑦· 𝑧))
5453oveqd 7404 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
5545oveqd 7404 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑧) = (𝑥𝐽𝑧))
5654, 55eleq12d 2822 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5749, 56raleqbidv 3319 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5848, 57raleqbidv 3319 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5939, 58raleqbidv 3319 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6039, 59raleqbidv 3319 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6147, 60anbi12d 632 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6239, 61raleqbidv 3319 . . . . . . . . . . 11 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6334, 38, 62sbcied2 3798 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ([dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6430, 63anbi12d 632 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6564adantlr 715 . . . . . . . 8 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6623, 65sbcied 3797 . . . . . . 7 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6722, 66bitr3id 285 . . . . . 6 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6867ex 412 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ V → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
6917, 21, 68pm5.21ndd 379 . . . 4 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
703, 69sbcied 3797 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
7113, 15, 703bitr2d 307 . 2 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
721, 2, 71syl2anc 584 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  [wsbc 3753  csb 3862  cop 4595   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  compcco 17232  Catccat 17625  Idccid 17626  Homf chomf 17627  cat cssc 17769  Subcatcsubc 17771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-ixp 8871  df-ssc 17772  df-subc 17774
This theorem is referenced by:  issubc2  17798  subcssc  17802
  Copyright terms: Public domain W3C validator