MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg Structured version   Visualization version   GIF version

Theorem issubg 19039
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
issubg (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))

Proof of Theorem issubg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 19036 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
21mptrcl 6938 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3 simp1 1136 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) → 𝐺 ∈ Grp)
4 fveq2 6822 . . . . . . . . . 10 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 issubg.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2784 . . . . . . . . 9 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
76pweqd 4564 . . . . . . . 8 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
8 oveq1 7353 . . . . . . . . 9 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
98eleq1d 2816 . . . . . . . 8 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
107, 9rabeqbidv 3413 . . . . . . 7 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
115fvexi 6836 . . . . . . . . 9 𝐵 ∈ V
1211pwex 5316 . . . . . . . 8 𝒫 𝐵 ∈ V
1312rabex 5275 . . . . . . 7 {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V
1410, 1, 13fvmpt 6929 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
1514eleq2d 2817 . . . . 5 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp}))
16 oveq2 7354 . . . . . . . 8 (𝑠 = 𝑆 → (𝐺s 𝑠) = (𝐺s 𝑆))
1716eleq1d 2816 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺s 𝑠) ∈ Grp ↔ (𝐺s 𝑆) ∈ Grp))
1817elrab 3642 . . . . . 6 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
1911elpw2 5270 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 624 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
2118, 20bitri 275 . . . . 5 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
2215, 21bitrdi 287 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
23 ibar 528 . . . 4 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
2422, 23bitrd 279 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
25 3anass 1094 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
2624, 25bitr4di 289 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
272, 3, 26pm5.21nii 378 1 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  wss 3897  𝒫 cpw 4547  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  Grpcgrp 18846  SubGrpcsubg 19033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subg 19036
This theorem is referenced by:  subgss  19040  subgid  19041  subggrp  19042  subgrcl  19044  issubg2  19054  resgrpisgrp  19060  subsubg  19062  pgrpsubgsymgbi  19320  opprsubg  20270  subrngsubg  20467  subrgsubg  20492  subdrgint  20718  suborng  20791  cphsubrglem  25104  algextdeglem8  33737
  Copyright terms: Public domain W3C validator