MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg Structured version   Visualization version   GIF version

Theorem issubg 18397
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
issubg (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))

Proof of Theorem issubg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 18394 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
21mptrcl 6784 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3 simp1 1137 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) → 𝐺 ∈ Grp)
4 fveq2 6674 . . . . . . . . . 10 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 issubg.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2791 . . . . . . . . 9 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
76pweqd 4507 . . . . . . . 8 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
8 oveq1 7177 . . . . . . . . 9 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
98eleq1d 2817 . . . . . . . 8 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
107, 9rabeqbidv 3387 . . . . . . 7 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
115fvexi 6688 . . . . . . . . 9 𝐵 ∈ V
1211pwex 5247 . . . . . . . 8 𝒫 𝐵 ∈ V
1312rabex 5200 . . . . . . 7 {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V
1410, 1, 13fvmpt 6775 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
1514eleq2d 2818 . . . . 5 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp}))
16 oveq2 7178 . . . . . . . 8 (𝑠 = 𝑆 → (𝐺s 𝑠) = (𝐺s 𝑆))
1716eleq1d 2817 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺s 𝑠) ∈ Grp ↔ (𝐺s 𝑆) ∈ Grp))
1817elrab 3588 . . . . . 6 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
1911elpw2 5213 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2019anbi1i 627 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
2118, 20bitri 278 . . . . 5 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
2215, 21bitrdi 290 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
23 ibar 532 . . . 4 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
2422, 23bitrd 282 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
25 3anass 1096 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
2624, 25bitr4di 292 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
272, 3, 26pm5.21nii 383 1 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  {crab 3057  wss 3843  𝒫 cpw 4488  cfv 6339  (class class class)co 7170  Basecbs 16586  s cress 16587  Grpcgrp 18219  SubGrpcsubg 18391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fv 6347  df-ov 7173  df-subg 18394
This theorem is referenced by:  subgss  18398  subgid  18399  subggrp  18400  subgrcl  18402  issubg2  18412  resgrpisgrp  18418  subsubg  18420  pgrpsubgsymgbi  18654  opprsubg  19508  subrgsubg  19660  subdrgint  19701  cphsubrglem  23929  suborng  31091
  Copyright terms: Public domain W3C validator