MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subg0 Structured version   Visualization version   GIF version

Theorem subg0 18264
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subg0.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . 5 𝐻 = (𝐺s 𝑆)
2 eqid 2820 . . . . 5 (+g𝐺) = (+g𝐺)
31, 2ressplusg 16591 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
43oveqd 7150 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = ((0g𝐻)(+g𝐻)(0g𝐻)))
51subggrp 18261 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
6 eqid 2820 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
7 eqid 2820 . . . . . 6 (0g𝐻) = (0g𝐻)
86, 7grpidcl 18110 . . . . 5 (𝐻 ∈ Grp → (0g𝐻) ∈ (Base‘𝐻))
95, 8syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐻))
10 eqid 2820 . . . . 5 (+g𝐻) = (+g𝐻)
116, 10, 7grplid 18112 . . . 4 ((𝐻 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐻)) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
125, 9, 11syl2anc 586 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
134, 12eqtrd 2855 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻))
14 subgrcl 18263 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
15 eqid 2820 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
1615subgss 18259 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
171subgbas 18262 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
189, 17eleqtrrd 2914 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ 𝑆)
1916, 18sseldd 3947 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐺))
20 subg0.i . . . 4 0 = (0g𝐺)
2115, 2, 20grpid 18118 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐺)) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
2214, 19, 21syl2anc 586 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
2313, 22mpbid 234 1 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  cfv 6331  (class class class)co 7133  Basecbs 16462  s cress 16463  +gcplusg 16544  0gc0g 16692  Grpcgrp 18082  SubGrpcsubg 18252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-subg 18255
This theorem is referenced by:  subginv  18265  subg0cl  18266  subgmulg  18272  subgga  18409  gasubg  18411  sylow2blem2  18725  subgdmdprd  19135  pgpfaclem1  19182  subrg0  19518  subdrgint  19558  abvres  19586  mpl0  20197  gzrngunitlem  20586  frlm0  20874  frlmgsum  20892  subgnm  23218  cphsubrglem  23761  qrng0  26184  suborng  30896  selvval2lem4  39248  pwssplit4  39826
  Copyright terms: Public domain W3C validator