Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subginvcl | Structured version Visualization version GIF version |
Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subginvcl.i | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
subginvcl | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 18825 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
3 | simpr 485 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
4 | 1 | subgbas 18826 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
6 | 3, 5 | eleqtrd 2840 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘(𝐺 ↾s 𝑆))) |
7 | eqid 2737 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
8 | eqid 2737 | . . . 4 ⊢ (invg‘(𝐺 ↾s 𝑆)) = (invg‘(𝐺 ↾s 𝑆)) | |
9 | 7, 8 | grpinvcl 18694 | . . 3 ⊢ (((𝐺 ↾s 𝑆) ∈ Grp ∧ 𝑋 ∈ (Base‘(𝐺 ↾s 𝑆))) → ((invg‘(𝐺 ↾s 𝑆))‘𝑋) ∈ (Base‘(𝐺 ↾s 𝑆))) |
10 | 2, 6, 9 | syl2an2r 682 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((invg‘(𝐺 ↾s 𝑆))‘𝑋) ∈ (Base‘(𝐺 ↾s 𝑆))) |
11 | subginvcl.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
12 | 1, 11, 8 | subginv 18829 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = ((invg‘(𝐺 ↾s 𝑆))‘𝑋)) |
13 | 10, 12, 5 | 3eltr4d 2853 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 ↾s cress 17008 Grpcgrp 18644 invgcminusg 18645 SubGrpcsubg 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-minusg 18648 df-subg 18819 |
This theorem is referenced by: subgsubcl 18833 subgmulgcl 18835 issubg2 18837 subgint 18846 ssnmz 18861 eqger 18873 ghmpreima 18923 lsmelvalm 19323 lsmsubg 19326 lsmmod 19348 lsmdisj2 19355 dprdfinv 19689 cntzsdrg 20141 cphsqrtcl3 24422 taylply2 25598 grplsmid 31697 nsgmgclem 31701 nsgqusf1olem1 31703 lbsdiflsp0 31813 nelsubginvcld 40430 nelsubgsubcld 40432 rngunsnply 41209 |
Copyright terms: Public domain | W3C validator |