MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg2 Structured version   Visualization version   GIF version

Theorem issubg2 17875
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
issubg2.b 𝐵 = (Base‘𝐺)
issubg2.p + = (+g𝐺)
issubg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubg2.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 17861 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2765 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subgbas 17864 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
53subggrp 17863 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2765 . . . . . 6 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
76grpbn0 17720 . . . . 5 ((𝐺s 𝑆) ∈ Grp → (Base‘(𝐺s 𝑆)) ≠ ∅)
85, 7syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (Base‘(𝐺s 𝑆)) ≠ ∅)
94, 8eqnetrd 3004 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
10 issubg2.p . . . . . . . 8 + = (+g𝐺)
1110subgcl 17870 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
12113expa 1147 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) ∧ 𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
1312ralrimiva 3113 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
14 issubg2.i . . . . . 6 𝐼 = (invg𝐺)
1514subginvcl 17869 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
1613, 15jca 507 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
1716ralrimiva 3113 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
182, 9, 173jca 1158 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)))
19 simpl 474 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝐺 ∈ Grp)
20 simpr1 1248 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆𝐵)
213, 1ressbas2 16205 . . . . . 6 (𝑆𝐵𝑆 = (Base‘(𝐺s 𝑆)))
2220, 21syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 = (Base‘(𝐺s 𝑆)))
23 fvex 6388 . . . . . . 7 (Base‘(𝐺s 𝑆)) ∈ V
2422, 23syl6eqel 2852 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ V)
253, 10ressplusg 16267 . . . . . 6 (𝑆 ∈ V → + = (+g‘(𝐺s 𝑆)))
2624, 25syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → + = (+g‘(𝐺s 𝑆)))
27 simpr3 1252 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
28 simpl 474 . . . . . . . . 9 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
2928ralimi 3099 . . . . . . . 8 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
3027, 29syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
31 oveq1 6849 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3231eleq1d 2829 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑦) ∈ 𝑆))
33 oveq2 6850 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eleq1d 2829 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑣) ∈ 𝑆))
3532, 34rspc2v 3474 . . . . . . 7 ((𝑢𝑆𝑣𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 → (𝑢 + 𝑣) ∈ 𝑆))
3630, 35syl5com 31 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆))
37363impib 1144 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3820sseld 3760 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑢𝑆𝑢𝐵))
3920sseld 3760 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑣𝑆𝑣𝐵))
4020sseld 3760 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑤𝑆𝑤𝐵))
4138, 39, 403anim123d 1567 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
4241imp 395 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
431, 10grpass 17700 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4443adantlr 706 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4542, 44syldan 585 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
46 simpr2 1250 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ≠ ∅)
47 n0 4095 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑢 𝑢𝑆)
4846, 47sylib 209 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∃𝑢 𝑢𝑆)
4920sselda 3761 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝐵)
50 eqid 2765 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
511, 10, 50, 14grplinv 17737 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5251adantlr 706 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5349, 52syldan 585 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
54 simpr 477 . . . . . . . . . . 11 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → (𝐼𝑥) ∈ 𝑆)
5554ralimi 3099 . . . . . . . . . 10 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
5627, 55syl 17 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
57 fveq2 6375 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐼𝑥) = (𝐼𝑢))
5857eleq1d 2829 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼𝑢) ∈ 𝑆))
5958rspccva 3460 . . . . . . . . 9 ((∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
6056, 59sylan 575 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
61 simpr 477 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝑆)
6230adantr 472 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
63 ovrspc2v 6868 . . . . . . . 8 ((((𝐼𝑢) ∈ 𝑆𝑢𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6460, 61, 62, 63syl21anc 866 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6553, 64eqeltrrd 2845 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (0g𝐺) ∈ 𝑆)
6648, 65exlimddv 2030 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (0g𝐺) ∈ 𝑆)
671, 10, 50grplid 17721 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6867adantlr 706 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6949, 68syldan 585 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((0g𝐺) + 𝑢) = 𝑢)
7022, 26, 37, 45, 66, 69, 60, 53isgrpd 17713 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝐺s 𝑆) ∈ Grp)
711issubg 17860 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
7219, 20, 70, 71syl3anbrc 1443 . . 3 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))
7372ex 401 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)))
7418, 73impbid2 217 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  Vcvv 3350  wss 3732  c0 4079  cfv 6068  (class class class)co 6842  Basecbs 16132  s cress 16133  +gcplusg 16216  0gc0g 16368  Grpcgrp 17691  invgcminusg 17692  SubGrpcsubg 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-subg 17857
This theorem is referenced by:  issubgrpd2  17876  issubg3  17878  issubg4  17879  grpissubg  17880  subgint  17884  0subg  17885  cycsubgcl  17886  nmzsubg  17901  ghmrn  17939  ghmpreima  17948  gastacl  18007  torsubg  18523  oddvdssubg  18524  subrgugrp  19068  cntzsubr  19081  lsssubg  19229  lidlsubg  19489  mplsubglem  19708  mplind  19775  cnsubglem  20068  cnmsubglem  20082  cpmatsubgpmat  20804
  Copyright terms: Public domain W3C validator