MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg2 Structured version   Visualization version   GIF version

Theorem issubg2 19021
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
issubg2.b 𝐵 = (Base‘𝐺)
issubg2.p + = (+g𝐺)
issubg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubg2.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 19007 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2733 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subgbas 19010 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
53subggrp 19009 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2733 . . . . . 6 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
76grpbn0 18851 . . . . 5 ((𝐺s 𝑆) ∈ Grp → (Base‘(𝐺s 𝑆)) ≠ ∅)
85, 7syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (Base‘(𝐺s 𝑆)) ≠ ∅)
94, 8eqnetrd 3009 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
10 issubg2.p . . . . . . . 8 + = (+g𝐺)
1110subgcl 19016 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
12113expa 1119 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) ∧ 𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
1312ralrimiva 3147 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
14 issubg2.i . . . . . 6 𝐼 = (invg𝐺)
1514subginvcl 19015 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
1613, 15jca 513 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
1716ralrimiva 3147 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
182, 9, 173jca 1129 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)))
19 simpl 484 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝐺 ∈ Grp)
20 simpr1 1195 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆𝐵)
213, 1ressbas2 17182 . . . . . 6 (𝑆𝐵𝑆 = (Base‘(𝐺s 𝑆)))
2220, 21syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 = (Base‘(𝐺s 𝑆)))
23 fvex 6905 . . . . . . 7 (Base‘(𝐺s 𝑆)) ∈ V
2422, 23eqeltrdi 2842 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ V)
253, 10ressplusg 17235 . . . . . 6 (𝑆 ∈ V → + = (+g‘(𝐺s 𝑆)))
2624, 25syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → + = (+g‘(𝐺s 𝑆)))
27 simpr3 1197 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
28 simpl 484 . . . . . . . . 9 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
2928ralimi 3084 . . . . . . . 8 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
3027, 29syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
31 oveq1 7416 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3231eleq1d 2819 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑦) ∈ 𝑆))
33 oveq2 7417 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eleq1d 2819 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑣) ∈ 𝑆))
3532, 34rspc2v 3623 . . . . . . 7 ((𝑢𝑆𝑣𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 → (𝑢 + 𝑣) ∈ 𝑆))
3630, 35syl5com 31 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆))
37363impib 1117 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3820sseld 3982 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑢𝑆𝑢𝐵))
3920sseld 3982 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑣𝑆𝑣𝐵))
4020sseld 3982 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑤𝑆𝑤𝐵))
4138, 39, 403anim123d 1444 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
4241imp 408 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
431, 10grpass 18828 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4443adantlr 714 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4542, 44syldan 592 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
46 simpr2 1196 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ≠ ∅)
47 n0 4347 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑢 𝑢𝑆)
4846, 47sylib 217 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∃𝑢 𝑢𝑆)
4920sselda 3983 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝐵)
50 eqid 2733 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
511, 10, 50, 14grplinv 18874 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5251adantlr 714 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5349, 52syldan 592 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
54 simpr 486 . . . . . . . . . . 11 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → (𝐼𝑥) ∈ 𝑆)
5554ralimi 3084 . . . . . . . . . 10 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
5627, 55syl 17 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
57 fveq2 6892 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐼𝑥) = (𝐼𝑢))
5857eleq1d 2819 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼𝑢) ∈ 𝑆))
5958rspccva 3612 . . . . . . . . 9 ((∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
6056, 59sylan 581 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
61 simpr 486 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝑆)
6230adantr 482 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
63 ovrspc2v 7435 . . . . . . . 8 ((((𝐼𝑢) ∈ 𝑆𝑢𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6460, 61, 62, 63syl21anc 837 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6553, 64eqeltrrd 2835 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (0g𝐺) ∈ 𝑆)
6648, 65exlimddv 1939 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (0g𝐺) ∈ 𝑆)
671, 10, 50grplid 18852 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6867adantlr 714 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6949, 68syldan 592 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((0g𝐺) + 𝑢) = 𝑢)
7022, 26, 37, 45, 66, 69, 60, 53isgrpd 18844 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝐺s 𝑆) ∈ Grp)
711issubg 19006 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
7219, 20, 70, 71syl3anbrc 1344 . . 3 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))
7372ex 414 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)))
7418, 73impbid2 225 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  Vcvv 3475  wss 3949  c0 4323  cfv 6544  (class class class)co 7409  Basecbs 17144  s cress 17173  +gcplusg 17197  0gc0g 17385  Grpcgrp 18819  invgcminusg 18820  SubGrpcsubg 19000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-subg 19003
This theorem is referenced by:  issubgrpd2  19022  issubg3  19024  issubg4  19025  grpissubg  19026  subgint  19030  0subgOLD  19032  nmzsubg  19045  cycsubgcl  19083  ghmrn  19105  ghmpreima  19114  gastacl  19173  torsubg  19722  oddvdssubg  19723  subrgugrp  20338  cntzsubr  20353  lsssubg  20568  lidlsubg  20838  cnsubglem  20994  cnmsubglem  21008  mplsubglem  21558  mplind  21631  mhpsubg  21696  cpmatsubgpmat  22222  nsgqusf1olem1  32555  cntzsubrng  46794  pzriprnglem4  46856
  Copyright terms: Public domain W3C validator