MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg2 Structured version   Visualization version   GIF version

Theorem issubg2 19054
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
issubg2.b 𝐵 = (Base‘𝐺)
issubg2.p + = (+g𝐺)
issubg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubg2.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 19040 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2731 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subgbas 19043 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
53subggrp 19042 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2731 . . . . . 6 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
76grpbn0 18879 . . . . 5 ((𝐺s 𝑆) ∈ Grp → (Base‘(𝐺s 𝑆)) ≠ ∅)
85, 7syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (Base‘(𝐺s 𝑆)) ≠ ∅)
94, 8eqnetrd 2995 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
10 issubg2.p . . . . . . . 8 + = (+g𝐺)
1110subgcl 19049 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
12113expa 1118 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) ∧ 𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
1312ralrimiva 3124 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
14 issubg2.i . . . . . 6 𝐼 = (invg𝐺)
1514subginvcl 19048 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
1613, 15jca 511 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
1716ralrimiva 3124 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
182, 9, 173jca 1128 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)))
19 simpl 482 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝐺 ∈ Grp)
20 simpr1 1195 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆𝐵)
213, 1ressbas2 17149 . . . . . 6 (𝑆𝐵𝑆 = (Base‘(𝐺s 𝑆)))
2220, 21syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 = (Base‘(𝐺s 𝑆)))
23 fvex 6835 . . . . . . 7 (Base‘(𝐺s 𝑆)) ∈ V
2422, 23eqeltrdi 2839 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ V)
253, 10ressplusg 17195 . . . . . 6 (𝑆 ∈ V → + = (+g‘(𝐺s 𝑆)))
2624, 25syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → + = (+g‘(𝐺s 𝑆)))
27 simpr3 1197 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
28 simpl 482 . . . . . . . . 9 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
2928ralimi 3069 . . . . . . . 8 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
3027, 29syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
31 oveq1 7353 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3231eleq1d 2816 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑦) ∈ 𝑆))
33 oveq2 7354 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eleq1d 2816 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑣) ∈ 𝑆))
3532, 34rspc2v 3583 . . . . . . 7 ((𝑢𝑆𝑣𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 → (𝑢 + 𝑣) ∈ 𝑆))
3630, 35syl5com 31 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆))
37363impib 1116 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3820sseld 3928 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑢𝑆𝑢𝐵))
3920sseld 3928 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑣𝑆𝑣𝐵))
4020sseld 3928 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑤𝑆𝑤𝐵))
4138, 39, 403anim123d 1445 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
4241imp 406 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
431, 10grpass 18855 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4443adantlr 715 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4542, 44syldan 591 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
46 simpr2 1196 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ≠ ∅)
47 n0 4300 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑢 𝑢𝑆)
4846, 47sylib 218 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∃𝑢 𝑢𝑆)
4920sselda 3929 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝐵)
50 eqid 2731 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
511, 10, 50, 14grplinv 18902 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5251adantlr 715 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5349, 52syldan 591 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
54 simpr 484 . . . . . . . . . . 11 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → (𝐼𝑥) ∈ 𝑆)
5554ralimi 3069 . . . . . . . . . 10 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
5627, 55syl 17 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
57 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐼𝑥) = (𝐼𝑢))
5857eleq1d 2816 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼𝑢) ∈ 𝑆))
5958rspccva 3571 . . . . . . . . 9 ((∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
6056, 59sylan 580 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
61 simpr 484 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝑆)
6230adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
63 ovrspc2v 7372 . . . . . . . 8 ((((𝐼𝑢) ∈ 𝑆𝑢𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6460, 61, 62, 63syl21anc 837 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6553, 64eqeltrrd 2832 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (0g𝐺) ∈ 𝑆)
6648, 65exlimddv 1936 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (0g𝐺) ∈ 𝑆)
671, 10, 50grplid 18880 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6867adantlr 715 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6949, 68syldan 591 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((0g𝐺) + 𝑢) = 𝑢)
7022, 26, 37, 45, 66, 69, 60, 53isgrpd 18871 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝐺s 𝑆) ∈ Grp)
711issubg 19039 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
7219, 20, 70, 71syl3anbrc 1344 . . 3 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))
7372ex 412 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)))
7418, 73impbid2 226 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4280  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  SubGrpcsubg 19033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036
This theorem is referenced by:  issubgrpd2  19055  issubg3  19057  issubg4  19058  grpissubg  19059  subgint  19063  nmzsubg  19077  cycsubgcl  19118  ghmrn  19141  ghmpreima  19150  gastacl  19221  torsubg  19766  oddvdssubg  19767  cntzsubrng  20482  subrgugrp  20506  cntzsubr  20521  lsssubg  20890  lidlsubg  21160  cnsubglem  21352  cnmsubglem  21367  pzriprnglem4  21421  mplsubglem  21936  mplind  22005  mhpsubg  22068  cpmatsubgpmat  22635  elrgspnlem1  33209  nsgqusf1olem1  33378  constrsdrg  33788
  Copyright terms: Public domain W3C validator