MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg2 Structured version   Visualization version   GIF version

Theorem issubg2 18943
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
issubg2.b 𝐵 = (Base‘𝐺)
issubg2.p + = (+g𝐺)
issubg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubg2.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 18929 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2736 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subgbas 18932 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
53subggrp 18931 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2736 . . . . . 6 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
76grpbn0 18779 . . . . 5 ((𝐺s 𝑆) ∈ Grp → (Base‘(𝐺s 𝑆)) ≠ ∅)
85, 7syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (Base‘(𝐺s 𝑆)) ≠ ∅)
94, 8eqnetrd 3011 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
10 issubg2.p . . . . . . . 8 + = (+g𝐺)
1110subgcl 18938 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
12113expa 1118 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) ∧ 𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
1312ralrimiva 3143 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
14 issubg2.i . . . . . 6 𝐼 = (invg𝐺)
1514subginvcl 18937 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
1613, 15jca 512 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
1716ralrimiva 3143 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
182, 9, 173jca 1128 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)))
19 simpl 483 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝐺 ∈ Grp)
20 simpr1 1194 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆𝐵)
213, 1ressbas2 17120 . . . . . 6 (𝑆𝐵𝑆 = (Base‘(𝐺s 𝑆)))
2220, 21syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 = (Base‘(𝐺s 𝑆)))
23 fvex 6855 . . . . . . 7 (Base‘(𝐺s 𝑆)) ∈ V
2422, 23eqeltrdi 2846 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ V)
253, 10ressplusg 17171 . . . . . 6 (𝑆 ∈ V → + = (+g‘(𝐺s 𝑆)))
2624, 25syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → + = (+g‘(𝐺s 𝑆)))
27 simpr3 1196 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
28 simpl 483 . . . . . . . . 9 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
2928ralimi 3086 . . . . . . . 8 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
3027, 29syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
31 oveq1 7364 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3231eleq1d 2822 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑦) ∈ 𝑆))
33 oveq2 7365 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eleq1d 2822 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑣) ∈ 𝑆))
3532, 34rspc2v 3590 . . . . . . 7 ((𝑢𝑆𝑣𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 → (𝑢 + 𝑣) ∈ 𝑆))
3630, 35syl5com 31 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆))
37363impib 1116 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3820sseld 3943 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑢𝑆𝑢𝐵))
3920sseld 3943 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑣𝑆𝑣𝐵))
4020sseld 3943 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑤𝑆𝑤𝐵))
4138, 39, 403anim123d 1443 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
4241imp 407 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
431, 10grpass 18757 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4443adantlr 713 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4542, 44syldan 591 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
46 simpr2 1195 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ≠ ∅)
47 n0 4306 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑢 𝑢𝑆)
4846, 47sylib 217 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∃𝑢 𝑢𝑆)
4920sselda 3944 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝐵)
50 eqid 2736 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
511, 10, 50, 14grplinv 18800 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5251adantlr 713 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5349, 52syldan 591 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
54 simpr 485 . . . . . . . . . . 11 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → (𝐼𝑥) ∈ 𝑆)
5554ralimi 3086 . . . . . . . . . 10 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
5627, 55syl 17 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
57 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐼𝑥) = (𝐼𝑢))
5857eleq1d 2822 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼𝑢) ∈ 𝑆))
5958rspccva 3580 . . . . . . . . 9 ((∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
6056, 59sylan 580 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
61 simpr 485 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝑆)
6230adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
63 ovrspc2v 7383 . . . . . . . 8 ((((𝐼𝑢) ∈ 𝑆𝑢𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6460, 61, 62, 63syl21anc 836 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6553, 64eqeltrrd 2839 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (0g𝐺) ∈ 𝑆)
6648, 65exlimddv 1938 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (0g𝐺) ∈ 𝑆)
671, 10, 50grplid 18780 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6867adantlr 713 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6949, 68syldan 591 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((0g𝐺) + 𝑢) = 𝑢)
7022, 26, 37, 45, 66, 69, 60, 53isgrpd 18772 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝐺s 𝑆) ∈ Grp)
711issubg 18928 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
7219, 20, 70, 71syl3anbrc 1343 . . 3 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))
7372ex 413 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)))
7418, 73impbid2 225 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  Vcvv 3445  wss 3910  c0 4282  cfv 6496  (class class class)co 7357  Basecbs 17083  s cress 17112  +gcplusg 17133  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  SubGrpcsubg 18922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-subg 18925
This theorem is referenced by:  issubgrpd2  18944  issubg3  18946  issubg4  18947  grpissubg  18948  subgint  18952  0subgOLD  18954  nmzsubg  18967  cycsubgcl  18999  ghmrn  19021  ghmpreima  19030  gastacl  19089  torsubg  19632  oddvdssubg  19633  subrgugrp  20241  cntzsubr  20255  lsssubg  20418  lidlsubg  20685  cnsubglem  20846  cnmsubglem  20860  mplsubglem  21405  mplind  21478  mhpsubg  21543  cpmatsubgpmat  22069  nsgqusf1olem1  32191
  Copyright terms: Public domain W3C validator