MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg2 Structured version   Visualization version   GIF version

Theorem issubg2 17816
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
issubg2.b 𝐵 = (Base‘𝐺)
issubg2.p + = (+g𝐺)
issubg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubg2.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 17802 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2771 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subgbas 17805 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
53subggrp 17804 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2771 . . . . . 6 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
76grpbn0 17658 . . . . 5 ((𝐺s 𝑆) ∈ Grp → (Base‘(𝐺s 𝑆)) ≠ ∅)
85, 7syl 17 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (Base‘(𝐺s 𝑆)) ≠ ∅)
94, 8eqnetrd 3010 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
10 issubg2.p . . . . . . . 8 + = (+g𝐺)
1110subgcl 17811 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
12113expa 1111 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) ∧ 𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
1312ralrimiva 3115 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
14 issubg2.i . . . . . 6 𝐼 = (invg𝐺)
1514subginvcl 17810 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
1613, 15jca 501 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
1716ralrimiva 3115 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
182, 9, 173jca 1122 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)))
19 simpl 468 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝐺 ∈ Grp)
20 simpr1 1233 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆𝐵)
213, 1ressbas2 16137 . . . . . 6 (𝑆𝐵𝑆 = (Base‘(𝐺s 𝑆)))
2220, 21syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 = (Base‘(𝐺s 𝑆)))
23 fvex 6344 . . . . . . 7 (Base‘(𝐺s 𝑆)) ∈ V
2422, 23syl6eqel 2858 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ V)
253, 10ressplusg 16200 . . . . . 6 (𝑆 ∈ V → + = (+g‘(𝐺s 𝑆)))
2624, 25syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → + = (+g‘(𝐺s 𝑆)))
27 simpr3 1237 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))
28 simpl 468 . . . . . . . . 9 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
2928ralimi 3101 . . . . . . . 8 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
3027, 29syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
31 oveq1 6802 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3231eleq1d 2835 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑦) ∈ 𝑆))
33 oveq2 6803 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eleq1d 2835 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑣) ∈ 𝑆))
3532, 34rspc2v 3472 . . . . . . 7 ((𝑢𝑆𝑣𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 → (𝑢 + 𝑣) ∈ 𝑆))
3630, 35syl5com 31 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆))
37363impib 1108 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3820sseld 3751 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑢𝑆𝑢𝐵))
3920sseld 3751 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑣𝑆𝑣𝐵))
4020sseld 3751 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝑤𝑆𝑤𝐵))
4138, 39, 403anim123d 1554 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
4241imp 393 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
431, 10grpass 17638 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4443adantlr 694 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4542, 44syldan 579 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
46 simpr2 1235 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ≠ ∅)
47 n0 4079 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑢 𝑢𝑆)
4846, 47sylib 208 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∃𝑢 𝑢𝑆)
4920sselda 3752 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝐵)
50 eqid 2771 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
511, 10, 50, 14grplinv 17675 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5251adantlr 694 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
5349, 52syldan 579 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) = (0g𝐺))
54 simpr 471 . . . . . . . . . . 11 ((∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → (𝐼𝑥) ∈ 𝑆)
5554ralimi 3101 . . . . . . . . . 10 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
5627, 55syl 17 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
57 fveq2 6333 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐼𝑥) = (𝐼𝑢))
5857eleq1d 2835 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼𝑢) ∈ 𝑆))
5958rspccva 3459 . . . . . . . . 9 ((∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
6056, 59sylan 569 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (𝐼𝑢) ∈ 𝑆)
61 simpr 471 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → 𝑢𝑆)
6230adantr 466 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
63 ovrspc2v 6820 . . . . . . . 8 ((((𝐼𝑢) ∈ 𝑆𝑢𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6460, 61, 62, 63syl21anc 1475 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((𝐼𝑢) + 𝑢) ∈ 𝑆)
6553, 64eqeltrrd 2851 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → (0g𝐺) ∈ 𝑆)
6648, 65exlimddv 2015 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (0g𝐺) ∈ 𝑆)
671, 10, 50grplid 17659 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6867adantlr 694 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
6949, 68syldan 579 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) ∧ 𝑢𝑆) → ((0g𝐺) + 𝑢) = 𝑢)
7022, 26, 37, 45, 66, 69, 60, 53isgrpd 17651 . . . 4 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → (𝐺s 𝑆) ∈ Grp)
711issubg 17801 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
7219, 20, 70, 71syl3anbrc 1428 . . 3 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))
7372ex 397 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)))
7418, 73impbid2 216 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  Vcvv 3351  wss 3723  c0 4063  cfv 6030  (class class class)co 6795  Basecbs 16063  s cress 16064  +gcplusg 16148  0gc0g 16307  Grpcgrp 17629  invgcminusg 17630  SubGrpcsubg 17795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-nn 11226  df-2 11284  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-subg 17798
This theorem is referenced by:  issubgrpd2  17817  issubg3  17819  issubg4  17820  grpissubg  17821  subgint  17825  0subg  17826  cycsubgcl  17827  nmzsubg  17842  ghmrn  17880  ghmpreima  17889  gastacl  17948  torsubg  18463  oddvdssubg  18464  subrgugrp  19008  cntzsubr  19021  lsssubg  19169  lidlsubg  19429  mplsubglem  19648  mplind  19716  cnsubglem  20009  cnmsubglem  20023  cpmatsubgpmat  20744
  Copyright terms: Public domain W3C validator