![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels3 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
Ref | Expression |
---|---|
dfsymrels3 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels2 37879 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
2 | cnvsym 6113 | . 2 ⊢ (◡𝑟 ⊆ 𝑟 ↔ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)) | |
3 | 1, 2 | rabbieq 37582 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 {crab 3431 ⊆ wss 3948 class class class wbr 5148 ◡ccnv 5675 Rels crels 37509 SymRels csymrels 37518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-rels 37819 df-ssr 37832 df-syms 37876 df-symrels 37877 |
This theorem is referenced by: elsymrels3 37888 |
Copyright terms: Public domain | W3C validator |