Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrels3 Structured version   Visualization version   GIF version

Theorem dfsymrels3 38502
Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.)
Assertion
Ref Expression
dfsymrels3 SymRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥)}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem dfsymrels3
StepHypRef Expression
1 dfsymrels2 38501 . 2 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
2 cnvsym 6144 . 2 (𝑟𝑟 ↔ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))
31, 2rabbieq 3452 1 SymRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  {crab 3443  wss 3976   class class class wbr 5166  ccnv 5699   Rels crels 38137   SymRels csymrels 38146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-rels 38441  df-ssr 38454  df-syms 38498  df-symrels 38499
This theorem is referenced by:  elsymrels3  38510
  Copyright terms: Public domain W3C validator