Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels5 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
Ref | Expression |
---|---|
dfsymrels5 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels4 36588 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | |
2 | elrelscnveq2 36538 | . 2 ⊢ (𝑟 ∈ Rels → (◡𝑟 = 𝑟 ↔ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥))) | |
3 | 1, 2 | rabimbieq 36318 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 {crab 3067 class class class wbr 5070 ◡ccnv 5579 Rels crels 36262 SymRels csymrels 36271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-rels 36530 df-ssr 36543 df-syms 36583 df-symrels 36584 |
This theorem is referenced by: elsymrels5 36597 |
Copyright terms: Public domain | W3C validator |