| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfsymrels5 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrels4 38545 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | |
| 2 | elrelscnveq2 38491 | . 2 ⊢ (𝑟 ∈ Rels → (◡𝑟 = 𝑟 ↔ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥))) | |
| 3 | 1, 2 | rabimbieq 38247 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 {crab 3408 class class class wbr 5110 ◡ccnv 5640 Rels crels 38178 SymRels csymrels 38187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-rels 38483 df-ssr 38496 df-syms 38540 df-symrels 38541 |
| This theorem is referenced by: elsymrels5 38554 |
| Copyright terms: Public domain | W3C validator |