Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrels4 Structured version   Visualization version   GIF version

Theorem dfsymrels4 38538
Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
dfsymrels4 SymRels = {𝑟 ∈ Rels ∣ 𝑟 = 𝑟}

Proof of Theorem dfsymrels4
StepHypRef Expression
1 dfsymrels2 38536 . 2 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
2 elrelscnveq 38483 . 2 (𝑟 ∈ Rels → (𝑟𝑟𝑟 = 𝑟))
31, 2rabimbieq 38240 1 SymRels = {𝑟 ∈ Rels ∣ 𝑟 = 𝑟}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3405  wss 3914  ccnv 5637   Rels crels 38171   SymRels csymrels 38180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-rels 38476  df-ssr 38489  df-syms 38533  df-symrels 38534
This theorem is referenced by:  dfsymrels5  38539  elsymrels4  38546
  Copyright terms: Public domain W3C validator