| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfsymrels4 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrels2 38647 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
| 2 | elrelscnveq 38650 | . 2 ⊢ (𝑟 ∈ Rels → (◡𝑟 ⊆ 𝑟 ↔ ◡𝑟 = 𝑟)) | |
| 3 | 1, 2 | rabimbieq 38298 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3395 ⊆ wss 3897 ◡ccnv 5613 Rels crels 38234 SymRels csymrels 38243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-rels 38474 df-ssr 38600 df-syms 38644 df-symrels 38645 |
| This theorem is referenced by: dfsymrels5 38654 elsymrels4 38661 |
| Copyright terms: Public domain | W3C validator |