![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrels4 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
dfsymrels4 | ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels2 38501 | . 2 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
2 | elrelscnveq 38448 | . 2 ⊢ (𝑟 ∈ Rels → (◡𝑟 ⊆ 𝑟 ↔ ◡𝑟 = 𝑟)) | |
3 | 1, 2 | rabimbieq 38207 | 1 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {crab 3443 ⊆ wss 3976 ◡ccnv 5699 Rels crels 38137 SymRels csymrels 38146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-rels 38441 df-ssr 38454 df-syms 38498 df-symrels 38499 |
This theorem is referenced by: dfsymrels5 38504 elsymrels4 38511 |
Copyright terms: Public domain | W3C validator |