Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrels4 Structured version   Visualization version   GIF version

Theorem dfsymrels4 38511
Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
dfsymrels4 SymRels = {𝑟 ∈ Rels ∣ 𝑟 = 𝑟}

Proof of Theorem dfsymrels4
StepHypRef Expression
1 dfsymrels2 38509 . 2 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
2 elrelscnveq 38456 . 2 (𝑟 ∈ Rels → (𝑟𝑟𝑟 = 𝑟))
31, 2rabimbieq 38213 1 SymRels = {𝑟 ∈ Rels ∣ 𝑟 = 𝑟}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3402  wss 3911  ccnv 5630   Rels crels 38144   SymRels csymrels 38153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-rels 38449  df-ssr 38462  df-syms 38506  df-symrels 38507
This theorem is referenced by:  dfsymrels5  38512  elsymrels4  38519
  Copyright terms: Public domain W3C validator