| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uni | Structured version Visualization version GIF version | ||
| Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪ {{1, 3}, {1, 8}} = {1, 3, 8} (ex-uni 30445). This is similar to the union of two classes df-un 3956. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-uni | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cuni 4907 | . 2 class ∪ 𝐴 |
| 3 | vx | . . . . . 6 setvar 𝑥 | |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 3, 4 | wel 2109 | . . . . 5 wff 𝑥 ∈ 𝑦 |
| 6 | 4 | cv 1539 | . . . . . 6 class 𝑦 |
| 7 | 6, 1 | wcel 2108 | . . . . 5 wff 𝑦 ∈ 𝐴 |
| 8 | 5, 7 | wa 395 | . . . 4 wff (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) |
| 9 | 8, 4 | wex 1779 | . . 3 wff ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) |
| 10 | 9, 3 | cab 2714 | . 2 class {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
| 11 | 2, 10 | wceq 1540 | 1 wff ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfuni2 4909 eluni 4910 uniprg 4923 csbuni 4936 uniuni 7782 csbunigVD 44918 |
| Copyright terms: Public domain | W3C validator |