Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-uni | Structured version Visualization version GIF version |
Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪ {{1, 3}, {1, 8}} = {1, 3, 8} (ex-uni 28797). This is similar to the union of two classes df-un 3891. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
df-uni | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | cuni 4838 | . 2 class ∪ 𝐴 |
3 | vx | . . . . . 6 setvar 𝑥 | |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 3, 4 | wel 2104 | . . . . 5 wff 𝑥 ∈ 𝑦 |
6 | 4 | cv 1537 | . . . . . 6 class 𝑦 |
7 | 6, 1 | wcel 2103 | . . . . 5 wff 𝑦 ∈ 𝐴 |
8 | 5, 7 | wa 396 | . . . 4 wff (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) |
9 | 8, 4 | wex 1778 | . . 3 wff ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) |
10 | 9, 3 | cab 2712 | . 2 class {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
11 | 2, 10 | wceq 1538 | 1 wff ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfuni2 4840 eluni 4841 uniprg 4855 uniprOLD 4857 csbuni 4869 uniuni 7619 csbunigVD 42523 |
Copyright terms: Public domain | W3C validator |