MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uni Structured version   Visualization version   GIF version

Definition df-uni 4837
Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, {{1, 3}, {1, 8}} = {1, 3, 8} (ex-uni 28691). This is similar to the union of two classes df-un 3888. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
df-uni 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-uni
StepHypRef Expression
1 cA . . 3 class 𝐴
21cuni 4836 . 2 class 𝐴
3 vx . . . . . 6 setvar 𝑥
4 vy . . . . . 6 setvar 𝑦
53, 4wel 2109 . . . . 5 wff 𝑥𝑦
64cv 1538 . . . . . 6 class 𝑦
76, 1wcel 2108 . . . . 5 wff 𝑦𝐴
85, 7wa 395 . . . 4 wff (𝑥𝑦𝑦𝐴)
98, 4wex 1783 . . 3 wff 𝑦(𝑥𝑦𝑦𝐴)
109, 3cab 2715 . 2 class {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
112, 10wceq 1539 1 wff 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
Colors of variables: wff setvar class
This definition is referenced by:  dfuni2  4838  eluni  4839  uniprg  4853  uniprOLD  4855  csbuni  4867  uniuni  7590  csbunigVD  42407
  Copyright terms: Public domain W3C validator