MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprg Structured version   Visualization version   GIF version

Theorem uniprg 4872
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4873 to prove it from uniprg 4872. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
uniprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . . 9 𝑦 ∈ V
21elpr 4598 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
32anbi2i 623 . . . . . . 7 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
4 ancom 460 . . . . . . . 8 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦))
5 andir 1010 . . . . . . . 8 (((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 275 . . . . . . 7 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
73, 6bitri 275 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
87exbii 1849 . . . . 5 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
9 19.43 1883 . . . . 5 (∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
108, 9bitri 275 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
11 clel3g 3611 . . . . . . 7 (𝐴𝑉 → (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦)))
1211bicomd 223 . . . . . 6 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
1312adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
14 clel3g 3611 . . . . . . 7 (𝐵𝑊 → (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
1514bicomd 223 . . . . . 6 (𝐵𝑊 → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1615adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1713, 16orbi12d 918 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ (𝑥𝐴𝑥𝐵)))
1810, 17bitrid 283 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝐴𝑥𝐵)))
1918abbidv 2797 . 2 ((𝐴𝑉𝐵𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
20 df-uni 4857 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
21 df-un 3902 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2219, 20, 213eqtr4g 2791 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  {cab 2709  cun 3895  {cpr 4575   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by:  unipr  4873  unisng  4874  unexg  7676  wunun  10601  tskun  10677  gruun  10697  mrcun  17528  unopn  22818  indistopon  22916  unconn  23344  limcun  25823  sshjval3  31334  prsiga  34144  unelsiga  34147  unelldsys  34171  measxun2  34223  measssd  34228  carsgsigalem  34328  carsgclctun  34334  pmeasmono  34337  probun  34432  indispconn  35278  bj-prmoore  37159  kelac2  43168  onsucunipr  43475  onsucunitp  43476  oaun2  43484  oaun3  43485  mnuund  44381  fourierdlem70  46284  fourierdlem71  46285  saluncl  46425  prsal  46426  meadjun  46570  omeunle  46624  toplatjoin  49112
  Copyright terms: Public domain W3C validator