MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprg Structured version   Visualization version   GIF version

Theorem uniprg 4853
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4854 to prove it from uniprg 4853. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
uniprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . . 9 𝑦 ∈ V
21elpr 4581 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
32anbi2i 622 . . . . . . 7 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
4 ancom 460 . . . . . . . 8 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦))
5 andir 1005 . . . . . . . 8 (((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 274 . . . . . . 7 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
73, 6bitri 274 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
87exbii 1851 . . . . 5 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
9 19.43 1886 . . . . 5 (∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
108, 9bitri 274 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
11 clel3g 3584 . . . . . . 7 (𝐴𝑉 → (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦)))
1211bicomd 222 . . . . . 6 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
1312adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
14 clel3g 3584 . . . . . . 7 (𝐵𝑊 → (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
1514bicomd 222 . . . . . 6 (𝐵𝑊 → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1615adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1713, 16orbi12d 915 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ (𝑥𝐴𝑥𝐵)))
1810, 17syl5bb 282 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝐴𝑥𝐵)))
1918abbidv 2808 . 2 ((𝐴𝑉𝐵𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
20 df-uni 4837 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
21 df-un 3888 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2219, 20, 213eqtr4g 2804 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  {cab 2715  cun 3881  {cpr 4560   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by:  unipr  4854  unisng  4857  wunun  10397  tskun  10473  gruun  10493  mrcun  17248  unopn  21960  indistopon  22059  unconn  22488  limcun  24964  sshjval3  29617  prsiga  31999  unelsiga  32002  unelldsys  32026  measxun2  32078  measssd  32083  carsgsigalem  32182  carsgclctun  32188  pmeasmono  32191  probun  32286  indispconn  33096  bj-prmoore  35213  kelac2  40806  mnuund  41785  fourierdlem70  43607  fourierdlem71  43608  saluncl  43748  prsal  43749  meadjun  43890  omeunle  43944  toplatjoin  46176
  Copyright terms: Public domain W3C validator