Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
2 | 1 | elpr 4584 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
3 | 2 | anbi2i 623 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵))) |
4 | | ancom 461 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) ∧ 𝑥 ∈ 𝑦)) |
5 | | andir 1006 |
. . . . . . . 8
⊢ (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) ∧ 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ (𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
6 | 4, 5 | bitri 274 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ (𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
7 | 3, 6 | bitri 274 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ (𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
8 | 7 | exbii 1850 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ (𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
9 | | 19.43 1885 |
. . . . 5
⊢
(∃𝑦((𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ (𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦)) ↔ (∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ ∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
10 | 8, 9 | bitri 274 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ (∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ ∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
11 | | clel3g 3591 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦))) |
12 | 11 | bicomd 222 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ 𝐴)) |
13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ 𝐴)) |
14 | | clel3g 3591 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑊 → (𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦))) |
15 | 14 | bicomd 222 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → (∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ 𝐵)) |
16 | 15 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ 𝐵)) |
17 | 13, 16 | orbi12d 916 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ∨ ∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) |
18 | 10, 17 | bitrid 282 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) |
19 | 18 | abbidv 2807 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵})} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)}) |
20 | | df-uni 4840 |
. 2
⊢ ∪ {𝐴,
𝐵} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵})} |
21 | | df-un 3892 |
. 2
⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
22 | 19, 20, 21 | 3eqtr4g 2803 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |