MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprg Structured version   Visualization version   GIF version

Theorem uniprg 4947
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4948 to prove it from uniprg 4947. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
uniprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . . . 9 𝑦 ∈ V
21elpr 4672 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
32anbi2i 622 . . . . . . 7 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
4 ancom 460 . . . . . . . 8 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦))
5 andir 1009 . . . . . . . 8 (((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 275 . . . . . . 7 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
73, 6bitri 275 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
87exbii 1846 . . . . 5 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
9 19.43 1881 . . . . 5 (∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
108, 9bitri 275 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
11 clel3g 3674 . . . . . . 7 (𝐴𝑉 → (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦)))
1211bicomd 223 . . . . . 6 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
1312adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
14 clel3g 3674 . . . . . . 7 (𝐵𝑊 → (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
1514bicomd 223 . . . . . 6 (𝐵𝑊 → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1615adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1713, 16orbi12d 917 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ (𝑥𝐴𝑥𝐵)))
1810, 17bitrid 283 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝐴𝑥𝐵)))
1918abbidv 2811 . 2 ((𝐴𝑉𝐵𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
20 df-uni 4932 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
21 df-un 3981 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2219, 20, 213eqtr4g 2805 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  cun 3974  {cpr 4650   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by:  unipr  4948  unisng  4949  unexg  7778  wunun  10779  tskun  10855  gruun  10875  mrcun  17680  unopn  22930  indistopon  23029  unconn  23458  limcun  25950  sshjval3  31386  prsiga  34095  unelsiga  34098  unelldsys  34122  measxun2  34174  measssd  34179  carsgsigalem  34280  carsgclctun  34286  pmeasmono  34289  probun  34384  indispconn  35202  bj-prmoore  37081  kelac2  43022  onsucunipr  43334  onsucunitp  43335  oaun2  43343  oaun3  43344  mnuund  44247  fourierdlem70  46097  fourierdlem71  46098  saluncl  46238  prsal  46239  meadjun  46383  omeunle  46437  toplatjoin  48674
  Copyright terms: Public domain W3C validator