MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprg Structured version   Visualization version   GIF version

Theorem uniprg 4874
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4875 to prove it from uniprg 4874. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
uniprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . . 9 𝑦 ∈ V
21elpr 4602 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
32anbi2i 623 . . . . . . 7 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
4 ancom 460 . . . . . . . 8 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦))
5 andir 1010 . . . . . . . 8 (((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 275 . . . . . . 7 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
73, 6bitri 275 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
87exbii 1848 . . . . 5 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
9 19.43 1882 . . . . 5 (∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
108, 9bitri 275 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
11 clel3g 3616 . . . . . . 7 (𝐴𝑉 → (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦)))
1211bicomd 223 . . . . . 6 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
1312adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
14 clel3g 3616 . . . . . . 7 (𝐵𝑊 → (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
1514bicomd 223 . . . . . 6 (𝐵𝑊 → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1615adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1713, 16orbi12d 918 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ (𝑥𝐴𝑥𝐵)))
1810, 17bitrid 283 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝐴𝑥𝐵)))
1918abbidv 2795 . 2 ((𝐴𝑉𝐵𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
20 df-uni 4859 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
21 df-un 3908 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2219, 20, 213eqtr4g 2789 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  {cab 2707  cun 3901  {cpr 4579   cuni 4858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-un 3908  df-sn 4578  df-pr 4580  df-uni 4859
This theorem is referenced by:  unipr  4875  unisng  4876  unexg  7679  wunun  10604  tskun  10680  gruun  10700  mrcun  17528  unopn  22788  indistopon  22886  unconn  23314  limcun  25794  sshjval3  31298  prsiga  34104  unelsiga  34107  unelldsys  34131  measxun2  34183  measssd  34188  carsgsigalem  34289  carsgclctun  34295  pmeasmono  34298  probun  34393  indispconn  35217  bj-prmoore  37099  kelac2  43048  onsucunipr  43355  onsucunitp  43356  oaun2  43364  oaun3  43365  mnuund  44261  fourierdlem70  46167  fourierdlem71  46168  saluncl  46308  prsal  46309  meadjun  46453  omeunle  46507  toplatjoin  48996
  Copyright terms: Public domain W3C validator