MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprg Structured version   Visualization version   GIF version

Theorem uniprg 4904
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4905 to prove it from uniprg 4904. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
uniprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . . . . . . 9 𝑦 ∈ V
21elpr 4631 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
32anbi2i 623 . . . . . . 7 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
4 ancom 460 . . . . . . . 8 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦))
5 andir 1010 . . . . . . . 8 (((𝑦 = 𝐴𝑦 = 𝐵) ∧ 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 275 . . . . . . 7 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
73, 6bitri 275 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
87exbii 1848 . . . . 5 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)))
9 19.43 1882 . . . . 5 (∃𝑦((𝑦 = 𝐴𝑥𝑦) ∨ (𝑦 = 𝐵𝑥𝑦)) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
108, 9bitri 275 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
11 clel3g 3645 . . . . . . 7 (𝐴𝑉 → (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦)))
1211bicomd 223 . . . . . 6 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
1312adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ 𝑥𝐴))
14 clel3g 3645 . . . . . . 7 (𝐵𝑊 → (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦)))
1514bicomd 223 . . . . . 6 (𝐵𝑊 → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1615adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ 𝑥𝐵))
1713, 16orbi12d 918 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑦(𝑦 = 𝐴𝑥𝑦) ∨ ∃𝑦(𝑦 = 𝐵𝑥𝑦)) ↔ (𝑥𝐴𝑥𝐵)))
1810, 17bitrid 283 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝐴𝑥𝐵)))
1918abbidv 2802 . 2 ((𝐴𝑉𝐵𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
20 df-uni 4889 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
21 df-un 3936 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2219, 20, 213eqtr4g 2796 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  {cab 2714  cun 3929  {cpr 4608   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609  df-uni 4889
This theorem is referenced by:  unipr  4905  unisng  4906  unexg  7742  wunun  10729  tskun  10805  gruun  10825  mrcun  17639  unopn  22846  indistopon  22944  unconn  23372  limcun  25853  sshjval3  31340  prsiga  34167  unelsiga  34170  unelldsys  34194  measxun2  34246  measssd  34251  carsgsigalem  34352  carsgclctun  34358  pmeasmono  34361  probun  34456  indispconn  35261  bj-prmoore  37138  kelac2  43056  onsucunipr  43363  onsucunitp  43364  oaun2  43372  oaun3  43373  mnuund  44269  fourierdlem70  46172  fourierdlem71  46173  saluncl  46313  prsal  46314  meadjun  46458  omeunle  46512  toplatjoin  48943
  Copyright terms: Public domain W3C validator