MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbuni Structured version   Visualization version   GIF version

Theorem csbuni 4660
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
csbuni 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵

Proof of Theorem csbuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbab 4206 . . . 4 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}
2 sbcex2 3684 . . . . . 6 ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))
3 sbcan 3676 . . . . . . . 8 ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))
4 sbcg 3699 . . . . . . . . . 10 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
54anbi1d 617 . . . . . . . . 9 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
6 sbcel2 4186 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
76anbi2i 611 . . . . . . . . 9 ((𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))
85, 7syl6bb 278 . . . . . . . 8 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
93, 8syl5bb 274 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
109exbidv 2012 . . . . . 6 (𝐴 ∈ V → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
112, 10syl5bb 274 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
1211abbidv 2925 . . . 4 (𝐴 ∈ V → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
131, 12syl5eq 2852 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
14 df-uni 4631 . . . 4 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
1514csbeq2i 4190 . . 3 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16 df-uni 4631 . . 3 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
1713, 15, 163eqtr4g 2865 . 2 (𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
18 csbprc 4178 . . 3 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅)
19 csbprc 4178 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
2019unieqd 4640 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
21 uni0 4659 . . . 4 ∅ = ∅
2220, 21syl6req 2857 . . 3 𝐴 ∈ V → ∅ = 𝐴 / 𝑥𝐵)
2318, 22eqtrd 2840 . 2 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
2417, 23pm2.61i 176 1 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1637  wex 1859  wcel 2156  {cab 2792  Vcvv 3391  [wsbc 3633  csb 3728  c0 4116   cuni 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-in 3776  df-ss 3783  df-nul 4117  df-sn 4371  df-uni 4631
This theorem is referenced by:  csbwrecsg  33485  csbfv12gALTVD  39623
  Copyright terms: Public domain W3C validator