Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbunigVD Structured version   Visualization version   GIF version

Theorem csbunigVD 44114
Description: Virtual deduction proof of csbuni 4930. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbuni 4930 is csbunigVD 44114 without virtual deductions and was automatically derived from csbunigVD 44114.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧 𝑦)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦 𝐴 / 𝑥𝐵)   )
4:2,3: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦 [𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
5:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
6:4,5: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
7:6: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
8:7: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
9:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
10:8,9: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
11:10: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
12:11: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
13:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}    )
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
15:: 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16:15: 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦 𝐵)}
17:1,16: (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐵)}   )
18:1,17: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
19:14,18: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
20:: 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}
21:19,20: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
qed:21: (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbunigVD (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Proof of Theorem csbunigVD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 43790 . . . . . . . . . . . . 13 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbcg 3848 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
31, 2e1a 43843 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦)   )
4 sbcel2 4407 . . . . . . . . . . . . . 14 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
54a1i 11 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
61, 5e1a 43843 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)   )
7 pm4.38 635 . . . . . . . . . . . . 13 ((([𝐴 / 𝑥]𝑧𝑦𝑧𝑦) ∧ ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)) → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
87ex 412 . . . . . . . . . . . 12 (([𝐴 / 𝑥]𝑧𝑦𝑧𝑦) → (([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
93, 6, 8e11 43904 . . . . . . . . . . 11 (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
10 sbcan 3821 . . . . . . . . . . . . 13 ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))
1110a1i 11 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
121, 11e1a 43843 . . . . . . . . . . 11 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
13 bibi1 351 . . . . . . . . . . . 12 (([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)) → (([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)) ↔ (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
1413biimprcd 249 . . . . . . . . . . 11 ((([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → (([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)) → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
159, 12, 14e11 43904 . . . . . . . . . 10 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
1615gen11 43832 . . . . . . . . 9 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
17 exbi 1841 . . . . . . . . 9 (∀𝑦([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
1816, 17e1a 43843 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
19 sbcex2 3834 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))
2019a1i 11 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)))
211, 20e1a 43843 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
22 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)) → (([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) ↔ (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
2322biimprcd 249 . . . . . . . 8 ((∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → (([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)) → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
2418, 21, 23e11 43904 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
2524gen11 43832 . . . . . 6 (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
26 abbib 2796 . . . . . . 7 ({𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} ↔ ∀𝑧([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
2726biimpri 227 . . . . . 6 (∀𝑧([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
2825, 27e1a 43843 . . . . 5 (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
29 csbab 4429 . . . . . . 7 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}
3029a1i 11 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)})
311, 30e1a 43843 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}   )
32 eqeq2 2736 . . . . . 6 ({𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} ↔ 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
3332biimpd 228 . . . . 5 ({𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} → 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
3428, 31, 33e11 43904 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
35 df-uni 4900 . . . . . . 7 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
3635ax-gen 1789 . . . . . 6 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
37 spsbc 3782 . . . . . 6 (𝐴𝑉 → (∀𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} → [𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}))
381, 36, 37e10 43910 . . . . 5 (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
39 sbceqg 4401 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} ↔ 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}))
4039biimpd 228 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}))
411, 38, 40e11 43904 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
42 eqeq2 2736 . . . . 5 (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} ↔ 𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
4342biimpd 228 . . . 4 (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} → 𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
4434, 41, 43e11 43904 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
45 df-uni 4900 . . 3 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
46 eqeq2 2736 . . . 4 ( 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
4746biimprcd 249 . . 3 (𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → ( 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵))
4844, 45, 47e10 43910 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
4948in1 43787 1 (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  {cab 2701  [wsbc 3769  csb 3885   cuni 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-nul 4315  df-uni 4900  df-vd1 43786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator