| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idn1 44594 | . . . . . . . . . . . . 13
⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) | 
| 2 |  | sbcg 3863 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) | 
| 3 | 1, 2 | e1a 44647 | . . . . . . . . . . . 12
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   ) | 
| 4 |  | sbcel2 4418 | . . . . . . . . . . . . . 14
⊢
([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵) | 
| 5 | 4 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | 
| 6 | 1, 5 | e1a 44647 | . . . . . . . . . . . 12
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 7 |  | pm4.38 637 | . . . . . . . . . . . . 13
⊢
((([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) ∧ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 8 | 7 | ex 412 | . . . . . . . . . . . 12
⊢
(([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) → (([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵) → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)))) | 
| 9 | 3, 6, 8 | e11 44708 | . . . . . . . . . . 11
⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) | 
| 10 |  | sbcan 3838 | . . . . . . . . . . . . 13
⊢
([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) | 
| 11 | 10 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵))) | 
| 12 | 1, 11 | e1a 44647 | . . . . . . . . . . 11
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵))   ) | 
| 13 |  | bibi1 351 | . . . . . . . . . . . 12
⊢
(([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) ↔ (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)))) | 
| 14 | 13 | biimprcd 250 | . . . . . . . . . . 11
⊢
((([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) → (([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)))) | 
| 15 | 9, 12, 14 | e11 44708 | . . . . . . . . . 10
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) | 
| 16 | 15 | gen11 44636 | . . . . . . . . 9
⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) | 
| 17 |  | exbi 1847 | . . . . . . . . 9
⊢
(∀𝑦([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) → (∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 18 | 16, 17 | e1a 44647 | . . . . . . . 8
⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) | 
| 19 |  | sbcex2 3850 | . . . . . . . . . 10
⊢
([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | 
| 20 | 19 | a1i 11 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | 
| 21 | 1, 20 | e1a 44647 | . . . . . . . 8
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))   ) | 
| 22 |  | bibi1 351 | . . . . . . . . 9
⊢
(([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) → (([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) ↔ (∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)))) | 
| 23 | 22 | biimprcd 250 | . . . . . . . 8
⊢
((∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) → (([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) → ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)))) | 
| 24 | 18, 21, 23 | e11 44708 | . . . . . . 7
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) | 
| 25 | 24 | gen11 44636 | . . . . . 6
⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑧([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) | 
| 26 |  | abbib 2811 | . . . . . . 7
⊢ ({𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} ↔ ∀𝑧([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 27 | 26 | biimpri 228 | . . . . . 6
⊢
(∀𝑧([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) → {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}) | 
| 28 | 25, 27 | e1a 44647 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) | 
| 29 |  | csbab 4440 | . . . . . . 7
⊢
⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} | 
| 30 | 29 | a1i 11 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}) | 
| 31 | 1, 30 | e1a 44647 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) | 
| 32 |  | eqeq2 2749 | . . . . . 6
⊢ ({𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → (⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} ↔ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)})) | 
| 33 | 32 | biimpd 229 | . . . . 5
⊢ ({𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → (⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} → ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)})) | 
| 34 | 28, 31, 33 | e11 44708 | . . . 4
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) | 
| 35 |  | df-uni 4908 | . . . . . . 7
⊢ ∪ 𝐵 =
{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} | 
| 36 | 35 | ax-gen 1795 | . . . . . 6
⊢
∀𝑥∪ 𝐵 =
{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} | 
| 37 |  | spsbc 3801 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} → [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)})) | 
| 38 | 1, 36, 37 | e10 44714 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) | 
| 39 |  | sbceqg 4412 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} ↔ ⦋𝐴 / 𝑥⦌∪
𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)})) | 
| 40 | 39 | biimpd 229 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} → ⦋𝐴 / 𝑥⦌∪
𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)})) | 
| 41 | 1, 38, 40 | e11 44708 | . . . 4
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) | 
| 42 |  | eqeq2 2749 | . . . . 5
⊢
(⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → (⦋𝐴 / 𝑥⦌∪
𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} ↔ ⦋𝐴 / 𝑥⦌∪
𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)})) | 
| 43 | 42 | biimpd 229 | . . . 4
⊢
(⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → (⦋𝐴 / 𝑥⦌∪
𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} → ⦋𝐴 / 𝑥⦌∪
𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)})) | 
| 44 | 34, 41, 43 | e11 44708 | . . 3
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) | 
| 45 |  | df-uni 4908 | . . 3
⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} | 
| 46 |  | eqeq2 2749 | . . . 4
⊢ (∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → (⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵 ↔ ⦋𝐴 / 𝑥⦌∪
𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)})) | 
| 47 | 46 | biimprcd 250 | . . 3
⊢
(⦋𝐴 /
𝑥⦌∪ 𝐵 =
{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → (∪
⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} → ⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵)) | 
| 48 | 44, 45, 47 | e10 44714 | . 2
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪
⦋𝐴 / 𝑥⦌𝐵   ) | 
| 49 | 48 | in1 44591 | 1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵) |