Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbunigVD Structured version   Visualization version   GIF version

Theorem csbunigVD 41109
Description: Virtual deduction proof of csbuni 4858. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbuni 4858 is csbunigVD 41109 without virtual deductions and was automatically derived from csbunigVD 41109.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧 𝑦)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦 𝐴 / 𝑥𝐵)   )
4:2,3: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦 [𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
5:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
6:4,5: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
7:6: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
8:7: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
9:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
10:8,9: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
11:10: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
12:11: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
13:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}    )
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
15:: 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16:15: 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦 𝐵)}
17:1,16: (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐵)}   )
18:1,17: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
19:14,18: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
20:: 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}
21:19,20: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
qed:21: (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbunigVD (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Proof of Theorem csbunigVD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 40785 . . . . . . . . . . . . 13 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbcg 3844 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
31, 2e1a 40838 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦)   )
4 sbcel2 4364 . . . . . . . . . . . . . 14 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
54a1i 11 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
61, 5e1a 40838 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)   )
7 pm4.38 634 . . . . . . . . . . . . 13 ((([𝐴 / 𝑥]𝑧𝑦𝑧𝑦) ∧ ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)) → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
87ex 413 . . . . . . . . . . . 12 (([𝐴 / 𝑥]𝑧𝑦𝑧𝑦) → (([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
93, 6, 8e11 40899 . . . . . . . . . . 11 (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
10 sbcan 3818 . . . . . . . . . . . . 13 ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))
1110a1i 11 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
121, 11e1a 40838 . . . . . . . . . . 11 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
13 bibi1 353 . . . . . . . . . . . 12 (([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)) → (([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)) ↔ (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
1413biimprcd 251 . . . . . . . . . . 11 ((([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → (([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)) → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
159, 12, 14e11 40899 . . . . . . . . . 10 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
1615gen11 40827 . . . . . . . . 9 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
17 exbi 1838 . . . . . . . . 9 (∀𝑦([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
1816, 17e1a 40838 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
19 sbcex2 3831 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))
2019a1i 11 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)))
211, 20e1a 40838 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
22 bibi1 353 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)) → (([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) ↔ (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
2322biimprcd 251 . . . . . . . 8 ((∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → (([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)) → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))))
2418, 21, 23e11 40899 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
2524gen11 40827 . . . . . 6 (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
26 abbi 2885 . . . . . . 7 (∀𝑧([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) ↔ {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
2726biimpi 217 . . . . . 6 (∀𝑧([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)) → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
2825, 27e1a 40838 . . . . 5 (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
29 csbab 4386 . . . . . . 7 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}
3029a1i 11 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)})
311, 30e1a 40838 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}   )
32 eqeq2 2830 . . . . . 6 ({𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} ↔ 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
3332biimpd 230 . . . . 5 ({𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} → 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
3428, 31, 33e11 40899 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
35 df-uni 4831 . . . . . . 7 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
3635ax-gen 1787 . . . . . 6 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
37 spsbc 3782 . . . . . 6 (𝐴𝑉 → (∀𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} → [𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}))
381, 36, 37e10 40905 . . . . 5 (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
39 sbceqg 4358 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} ↔ 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}))
4039biimpd 230 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥] 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}))
411, 38, 40e11 40899 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
42 eqeq2 2830 . . . . 5 (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} ↔ 𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
4342biimpd 230 . . . 4 (𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} → 𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
4434, 41, 43e11 40899 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
45 df-uni 4831 . . 3 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
46 eqeq2 2830 . . . 4 ( 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → (𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}))
4746biimprcd 251 . . 3 (𝐴 / 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → ( 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)} → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵))
4844, 45, 47e10 40905 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
4948in1 40782 1 (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wex 1771  wcel 2105  {cab 2796  [wsbc 3769  csb 3880   cuni 4830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-nul 4289  df-uni 4831  df-vd1 40781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator