| Metamath
Proof Explorer Theorem List (p. 49 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ssprsseq 4801 | A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷})) | ||
| Theorem | sssn 4802 | The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | ||
| Theorem | ssunsn2 4803 | The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 4878. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐶 ∪ {𝐷})))) | ||
| Theorem | ssunsn 4804 | Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) | ||
| Theorem | eqsn 4805* | Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.) |
| ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | eqsnd 4806* | Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof shortened by SN, 3-Jul-2025.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
| Theorem | eqsndOLD 4807* | Obsolete version of eqsnd 4806 as of 3-Jul-2025. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
| Theorem | issn 4808* | A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧}) | ||
| Theorem | n0snor2el 4809* | A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧})) | ||
| Theorem | ssunpr 4810 | Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))) | ||
| Theorem | sspr 4811 | The subsets of a pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Mario Carneiro, 2-Jul-2016.) |
| ⊢ (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}))) | ||
| Theorem | sstp 4812 | The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))) | ||
| Theorem | tpss 4813 | An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | ||
| Theorem | tpssi 4814 | An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | ||
| Theorem | sneqrg 4815 | Closed form of sneqr 4816. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | ||
| Theorem | sneqr 4816 | If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) | ||
| Theorem | snsssn 4817 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) | ||
| Theorem | mosneq 4818* | There exists at most one set whose singleton is equal to a given class. See also moeq 3690. (Contributed by BJ, 24-Sep-2022.) |
| ⊢ ∃*𝑥{𝑥} = 𝐴 | ||
| Theorem | sneqbg 4819 | Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | snsspw 4820 | The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
| ⊢ {𝐴} ⊆ 𝒫 𝐴 | ||
| Theorem | prsspw 4821 | An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) | ||
| Theorem | preq1b 4822 | Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) | ||
| Theorem | preq2b 4823 | Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | preqr1 4824 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) | ||
| Theorem | preqr2 4825 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) | ||
| Theorem | preq12b 4826 | Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | ||
| Theorem | opthpr 4827 | An unordered pair has the ordered pair property (compare opth 5451) under certain conditions. (Contributed by NM, 27-Mar-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | preqr1g 4828 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 4824. (Contributed by AV, 29-Jan-2021.) (Revised by AV, 18-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) | ||
| Theorem | preq12bg 4829 | Closed form of preq12b 4826. (Contributed by Scott Fenton, 28-Mar-2014.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | ||
| Theorem | prneimg 4830 | Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})) | ||
| Theorem | prneimg2 4831 | Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷) ∧ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶)))) | ||
| Theorem | prnebg 4832 | A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷})) | ||
| Theorem | pr1eqbg 4833 | A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶})) | ||
| Theorem | pr1nebg 4834 | A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) | ||
| Theorem | preqsnd 4835 | Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016.) (Revised by AV, 13-Jun-2022.) (Revised by AV, 16-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) | ||
| Theorem | prnesn 4836 | A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≠ {𝐶}) | ||
| Theorem | prneprprc 4837 | A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) | ||
| Theorem | preqsn 4838 | Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 12-Jun-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
| Theorem | preq12nebg 4839 | Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | ||
| Theorem | prel12g 4840 | Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) (Revised by AV, 9-Dec-2018.) (Revised by AV, 12-Jun-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) | ||
| Theorem | opthprneg 4841 | An unordered pair has the ordered pair property (compare opth 5451) under certain conditions. Variant of opthpr 4827 in closed form. (Contributed by AV, 13-Jun-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | elpreqprlem 4842* | Lemma for elpreqpr 4843. (Contributed by Scott Fenton, 7-Dec-2020.) (Revised by AV, 9-Dec-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) | ||
| Theorem | elpreqpr 4843* | Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.) |
| ⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | ||
| Theorem | elpreqprb 4844* | A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) | ||
| Theorem | elpr2elpr 4845* | For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) | ||
| Theorem | dfopif 4846 | Rewrite df-op 4608 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | ||
| Theorem | dfopg 4847 | Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | ||
| Theorem | dfop 4848 | Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} | ||
| Theorem | opeq1 4849 | Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | ||
| Theorem | opeq2 4850 | Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | ||
| Theorem | opeq12 4851 | Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | ||
| Theorem | opeq1i 4852 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 | ||
| Theorem | opeq2i 4853 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 | ||
| Theorem | opeq12i 4854 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 | ||
| Theorem | opeq1d 4855 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | ||
| Theorem | opeq2d 4856 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | ||
| Theorem | opeq12d 4857 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | ||
| Theorem | oteq1 4858 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) | ||
| Theorem | oteq2 4859 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | ||
| Theorem | oteq3 4860 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | ||
| Theorem | oteq1d 4861 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) | ||
| Theorem | oteq2d 4862 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | ||
| Theorem | oteq3d 4863 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | ||
| Theorem | oteq123d 4864 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐸 = 𝐹) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) | ||
| Theorem | nfop 4865 | Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 | ||
| Theorem | nfopd 4866 | Deduction version of bound-variable hypothesis builder nfop 4865. This shows how the deduction version of a not-free theorem such as nfop 4865 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) | ||
| Theorem | csbopg 4867 | Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌〈𝐶, 𝐷〉 = 〈⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷〉) | ||
| Theorem | opidg 4868 | The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4869. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
| ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) | ||
| Theorem | opid 4869 | The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4868. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} | ||
| Theorem | ralunsn 4870* | Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | 2ralunsn 4871* | Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) | ||
| Theorem | opprc 4872 | Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | ||
| Theorem | opprc1 4873 | Expansion of an ordered pair when the first member is a proper class. See also opprc 4872. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) | ||
| Theorem | opprc2 4874 | Expansion of an ordered pair when the second member is a proper class. See also opprc 4872. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | ||
| Theorem | oprcl 4875 | If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | pwsn 4876 | The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
| ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | ||
| Theorem | pwpr 4877 | The power set of an unordered pair. (Contributed by NM, 1-May-2009.) |
| ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) | ||
| Theorem | pwtp 4878 | The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ 𝒫 {𝐴, 𝐵, 𝐶} = (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) | ||
| Theorem | pwpwpw0 4879 | Compute the power set of the power set of the power set of the empty set. (See also pw0 4788 and pwpw0 4789.) (Contributed by NM, 2-May-2009.) |
| ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | ||
| Theorem | pwv 4880 |
The power class of the universe is the universe. Exercise 4.12(d) of
[Mendelson] p. 235.
The collection of all classes is of course larger than V, which is the collection of all sets. But 𝒫 V, being a class, cannot contain proper classes, so 𝒫 V is actually no larger than V. This fact is exploited in ncanth 7358. (Contributed by NM, 14-Sep-2003.) |
| ⊢ 𝒫 V = V | ||
| Theorem | prproe 4881* | For an element of a proper unordered pair of elements of a class 𝑉, there is another (different) element of the class 𝑉 which is an element of the proper pair. (Contributed by AV, 18-Dec-2021.) |
| ⊢ ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) | ||
| Theorem | 3elpr2eq 4882 | If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021.) |
| ⊢ (((𝑋 ∈ {𝐴, 𝐵} ∧ 𝑌 ∈ {𝐴, 𝐵} ∧ 𝑍 ∈ {𝐴, 𝐵}) ∧ (𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋)) → 𝑌 = 𝑍) | ||
| Syntax | cuni 4883 | Extend class notation to include the union of a class. Read: "union (of) 𝐴". |
| class ∪ 𝐴 | ||
| Definition | df-uni 4884* | Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪ {{1, 3}, {1, 8}} = {1, 3, 8} (ex-uni 30353). This is similar to the union of two classes df-un 3931. (Contributed by NM, 23-Aug-1993.) |
| ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | dfuni2 4885* | Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
| ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | ||
| Theorem | eluni 4886* | Membership in class union. (Contributed by NM, 22-May-1994.) |
| ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | ||
| Theorem | eluni2 4887* | Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
| Theorem | elunii 4888 | Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) | ||
| Theorem | nfunid 4889 | Deduction version of nfuni 4890. (Contributed by NM, 18-Feb-2013.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) | ||
| Theorem | nfuni 4890 | Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥∪ 𝐴 | ||
| Theorem | uniss 4891 | Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | unissi 4892 | Subclass relationship for subclass union. Inference form of uniss 4891. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 | ||
| Theorem | unissd 4893 | Subclass relationship for subclass union. Deduction form of uniss 4891. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | unieq 4894 | Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by BJ, 13-Apr-2024.) |
| ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | ||
| Theorem | unieqi 4895 | Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝐴 = ∪ 𝐵 | ||
| Theorem | unieqd 4896 | Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) | ||
| Theorem | eluniab 4897* | Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) | ||
| Theorem | elunirab 4898* | Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
| ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) | ||
| Theorem | uniprg 4899 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4900 to prove it from uniprg 4899. (Revised by BJ, 1-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | ||
| Theorem | unipr 4900 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |