| Metamath
Proof Explorer Theorem List (p. 49 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ssunpr 4801 | Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))) | ||
| Theorem | sspr 4802 | The subsets of a pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Mario Carneiro, 2-Jul-2016.) |
| ⊢ (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}))) | ||
| Theorem | sstp 4803 | The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))) | ||
| Theorem | tpss 4804 | An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | ||
| Theorem | tpssi 4805 | An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | ||
| Theorem | sneqrg 4806 | Closed form of sneqr 4807. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | ||
| Theorem | sneqr 4807 | If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) | ||
| Theorem | snsssn 4808 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) | ||
| Theorem | mosneq 4809* | There exists at most one set whose singleton is equal to a given class. See also moeq 3681. (Contributed by BJ, 24-Sep-2022.) |
| ⊢ ∃*𝑥{𝑥} = 𝐴 | ||
| Theorem | sneqbg 4810 | Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | snsspw 4811 | The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
| ⊢ {𝐴} ⊆ 𝒫 𝐴 | ||
| Theorem | prsspw 4812 | An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) | ||
| Theorem | preq1b 4813 | Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) | ||
| Theorem | preq2b 4814 | Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | preqr1 4815 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) | ||
| Theorem | preqr2 4816 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) | ||
| Theorem | preq12b 4817 | Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | ||
| Theorem | opthpr 4818 | An unordered pair has the ordered pair property (compare opth 5439) under certain conditions. (Contributed by NM, 27-Mar-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | preqr1g 4819 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 4815. (Contributed by AV, 29-Jan-2021.) (Revised by AV, 18-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) | ||
| Theorem | preq12bg 4820 | Closed form of preq12b 4817. (Contributed by Scott Fenton, 28-Mar-2014.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | ||
| Theorem | prneimg 4821 | Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})) | ||
| Theorem | prneimg2 4822 | Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷) ∧ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶)))) | ||
| Theorem | prnebg 4823 | A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷})) | ||
| Theorem | pr1eqbg 4824 | A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶})) | ||
| Theorem | pr1nebg 4825 | A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) | ||
| Theorem | preqsnd 4826 | Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016.) (Revised by AV, 13-Jun-2022.) (Revised by AV, 16-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) | ||
| Theorem | prnesn 4827 | A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≠ {𝐶}) | ||
| Theorem | prneprprc 4828 | A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) | ||
| Theorem | preqsn 4829 | Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 12-Jun-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
| Theorem | preq12nebg 4830 | Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | ||
| Theorem | prel12g 4831 | Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) (Revised by AV, 9-Dec-2018.) (Revised by AV, 12-Jun-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) | ||
| Theorem | opthprneg 4832 | An unordered pair has the ordered pair property (compare opth 5439) under certain conditions. Variant of opthpr 4818 in closed form. (Contributed by AV, 13-Jun-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | elpreqprlem 4833* | Lemma for elpreqpr 4834. (Contributed by Scott Fenton, 7-Dec-2020.) (Revised by AV, 9-Dec-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) | ||
| Theorem | elpreqpr 4834* | Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.) |
| ⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | ||
| Theorem | elpreqprb 4835* | A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) | ||
| Theorem | elpr2elpr 4836* | For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) | ||
| Theorem | dfopif 4837 | Rewrite df-op 4599 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | ||
| Theorem | dfopg 4838 | Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | ||
| Theorem | dfop 4839 | Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} | ||
| Theorem | opeq1 4840 | Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | ||
| Theorem | opeq2 4841 | Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | ||
| Theorem | opeq12 4842 | Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | ||
| Theorem | opeq1i 4843 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 | ||
| Theorem | opeq2i 4844 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 | ||
| Theorem | opeq12i 4845 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 | ||
| Theorem | opeq1d 4846 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | ||
| Theorem | opeq2d 4847 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | ||
| Theorem | opeq12d 4848 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | ||
| Theorem | oteq1 4849 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) | ||
| Theorem | oteq2 4850 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | ||
| Theorem | oteq3 4851 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | ||
| Theorem | oteq1d 4852 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) | ||
| Theorem | oteq2d 4853 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | ||
| Theorem | oteq3d 4854 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | ||
| Theorem | oteq123d 4855 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐸 = 𝐹) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) | ||
| Theorem | nfop 4856 | Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 | ||
| Theorem | nfopd 4857 | Deduction version of bound-variable hypothesis builder nfop 4856. This shows how the deduction version of a not-free theorem such as nfop 4856 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) | ||
| Theorem | csbopg 4858 | Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌〈𝐶, 𝐷〉 = 〈⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷〉) | ||
| Theorem | opidg 4859 | The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4860. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
| ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) | ||
| Theorem | opid 4860 | The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4859. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} | ||
| Theorem | ralunsn 4861* | Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | 2ralunsn 4862* | Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) | ||
| Theorem | opprc 4863 | Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | ||
| Theorem | opprc1 4864 | Expansion of an ordered pair when the first member is a proper class. See also opprc 4863. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) | ||
| Theorem | opprc2 4865 | Expansion of an ordered pair when the second member is a proper class. See also opprc 4863. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | ||
| Theorem | oprcl 4866 | If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | pwsn 4867 | The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
| ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | ||
| Theorem | pwpr 4868 | The power set of an unordered pair. (Contributed by NM, 1-May-2009.) |
| ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) | ||
| Theorem | pwtp 4869 | The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| ⊢ 𝒫 {𝐴, 𝐵, 𝐶} = (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) | ||
| Theorem | pwpwpw0 4870 | Compute the power set of the power set of the power set of the empty set. (See also pw0 4779 and pwpw0 4780.) (Contributed by NM, 2-May-2009.) |
| ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | ||
| Theorem | pwv 4871 |
The power class of the universe is the universe. Exercise 4.12(d) of
[Mendelson] p. 235.
The collection of all classes is of course larger than V, which is the collection of all sets. But 𝒫 V, being a class, cannot contain proper classes, so 𝒫 V is actually no larger than V. This fact is exploited in ncanth 7345. (Contributed by NM, 14-Sep-2003.) |
| ⊢ 𝒫 V = V | ||
| Theorem | prproe 4872* | For an element of a proper unordered pair of elements of a class 𝑉, there is another (different) element of the class 𝑉 which is an element of the proper pair. (Contributed by AV, 18-Dec-2021.) |
| ⊢ ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) | ||
| Theorem | 3elpr2eq 4873 | If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021.) |
| ⊢ (((𝑋 ∈ {𝐴, 𝐵} ∧ 𝑌 ∈ {𝐴, 𝐵} ∧ 𝑍 ∈ {𝐴, 𝐵}) ∧ (𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋)) → 𝑌 = 𝑍) | ||
| Syntax | cuni 4874 | Extend class notation to include the union of a class. Read: "union (of) 𝐴". |
| class ∪ 𝐴 | ||
| Definition | df-uni 4875* | Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪ {{1, 3}, {1, 8}} = {1, 3, 8} (ex-uni 30362). This is similar to the union of two classes df-un 3922. (Contributed by NM, 23-Aug-1993.) |
| ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | dfuni2 4876* | Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
| ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | ||
| Theorem | eluni 4877* | Membership in class union. (Contributed by NM, 22-May-1994.) |
| ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | ||
| Theorem | eluni2 4878* | Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
| Theorem | elunii 4879 | Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) | ||
| Theorem | nfunid 4880 | Deduction version of nfuni 4881. (Contributed by NM, 18-Feb-2013.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) | ||
| Theorem | nfuni 4881 | Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥∪ 𝐴 | ||
| Theorem | uniss 4882 | Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | unissi 4883 | Subclass relationship for subclass union. Inference form of uniss 4882. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 | ||
| Theorem | unissd 4884 | Subclass relationship for subclass union. Deduction form of uniss 4882. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | unieq 4885 | Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by BJ, 13-Apr-2024.) |
| ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | ||
| Theorem | unieqi 4886 | Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝐴 = ∪ 𝐵 | ||
| Theorem | unieqd 4887 | Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) | ||
| Theorem | eluniab 4888* | Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) | ||
| Theorem | elunirab 4889* | Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
| ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) | ||
| Theorem | uniprg 4890 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4891 to prove it from uniprg 4890. (Revised by BJ, 1-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | ||
| Theorem | unipr 4891 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) | ||
| Theorem | unisng 4892 | A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | ||
| Theorem | unisn 4893 | A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ {𝐴} = 𝐴 | ||
| Theorem | unisnv 4894 | A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| ⊢ ∪ {𝑥} = 𝑥 | ||
| Theorem | unisn3 4895* | Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
| ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | ||
| Theorem | dfnfc2 4896* | An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.) |
| ⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) | ||
| Theorem | uniun 4897 | The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
| ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) | ||
| Theorem | uniin 4898 | The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 8773 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) | ||
| Theorem | ssuni 4899 | Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) | ||
| Theorem | uni0b 4900 | The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
| ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |