| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-un | Structured version Visualization version GIF version | ||
| Description: Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∪ {1, 8}) = {1, 3, 8} (ex-un 30443). Contrast this operation with difference (𝐴 ∖ 𝐵) (df-dif 3954) and intersection (𝐴 ∩ 𝐵) (df-in 3958). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 4270. For union defined in terms of intersection, see dfun3 4276. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-un | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cun 3949 | . 2 class (𝐴 ∪ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wo 848 | . . 3 wff (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2714 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1540 | 1 wff (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elun 4153 nfunOLD 4171 unabw 4307 uniprg 4923 iinuni 5098 fvclss 7261 bnj98 34881 |
| Copyright terms: Public domain | W3C validator |