MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-un Structured version   Visualization version   GIF version

Definition df-un 3951
Description: Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∪ {1, 8}) = {1, 3, 8} (ex-un 30351). Contrast this operation with difference (𝐴𝐵) (df-dif 3949) and intersection (𝐴𝐵) (df-in 3953). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 4258. For union defined in terms of intersection, see dfun3 4264. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
df-un (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-un
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cun 3944 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1533 . . . . 5 class 𝑥
65, 1wcel 2099 . . . 4 wff 𝑥𝐴
75, 2wcel 2099 . . . 4 wff 𝑥𝐵
86, 7wo 845 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2703 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1534 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  elun  4145  nfunOLD  4163  unabw  4296  uniprg  4921  uniprOLD  4923  iinuni  5098  fvclss  7245  bnj98  34722
  Copyright terms: Public domain W3C validator