| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version | ||
| Description: Example for df-uni 4859. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5377 | . . 3 ⊢ {1, 3} ∈ V | |
| 2 | prex 5377 | . . 3 ⊢ {1, 8} ∈ V | |
| 3 | 1, 2 | unipr 4875 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
| 4 | ex-un 30406 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
| 5 | 3, 4 | eqtri 2756 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 {cpr 4577 {ctp 4579 ∪ cuni 4858 1c1 11014 3c3 12188 8c8 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-tp 4580 df-uni 4859 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |