MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-uni Structured version   Visualization version   GIF version

Theorem ex-uni 30361
Description: Example for df-uni 4874. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-uni {{1, 3}, {1, 8}} = {1, 3, 8}

Proof of Theorem ex-uni
StepHypRef Expression
1 prex 5394 . . 3 {1, 3} ∈ V
2 prex 5394 . . 3 {1, 8} ∈ V
31, 2unipr 4890 . 2 {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8})
4 ex-un 30359 . 2 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
53, 4eqtri 2753 1 {{1, 3}, {1, 8}} = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3914  {cpr 4593  {ctp 4595   cuni 4873  1c1 11075  3c3 12243  8c8 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-sn 4592  df-pr 4594  df-tp 4596  df-uni 4874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator