Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version |
Description: Example for df-uni 4849. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5368 | . . 3 ⊢ {1, 3} ∈ V | |
2 | prex 5368 | . . 3 ⊢ {1, 8} ∈ V | |
3 | 1, 2 | unipr 4866 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
4 | ex-un 28896 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
5 | 3, 4 | eqtri 2765 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3894 {cpr 4571 {ctp 4573 ∪ cuni 4848 1c1 10942 3c3 12099 8c8 12104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-sn 4570 df-pr 4572 df-tp 4574 df-uni 4849 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |