![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version |
Description: Example for df-uni 4909. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5434 | . . 3 ⊢ {1, 3} ∈ V | |
2 | prex 5434 | . . 3 ⊢ {1, 8} ∈ V | |
3 | 1, 2 | unipr 4925 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
4 | ex-un 30247 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
5 | 3, 4 | eqtri 2756 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∪ cun 3945 {cpr 4631 {ctp 4633 ∪ cuni 4908 1c1 11140 3c3 12299 8c8 12304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-sn 4630 df-pr 4632 df-tp 4634 df-uni 4909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |