![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version |
Description: Example for df-uni 4913. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5443 | . . 3 ⊢ {1, 3} ∈ V | |
2 | prex 5443 | . . 3 ⊢ {1, 8} ∈ V | |
3 | 1, 2 | unipr 4929 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
4 | ex-un 30453 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
5 | 3, 4 | eqtri 2763 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 {cpr 4633 {ctp 4635 ∪ cuni 4912 1c1 11154 3c3 12320 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-tp 4636 df-uni 4913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |