| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version | ||
| Description: Example for df-uni 4874. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5394 | . . 3 ⊢ {1, 3} ∈ V | |
| 2 | prex 5394 | . . 3 ⊢ {1, 8} ∈ V | |
| 3 | 1, 2 | unipr 4890 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
| 4 | ex-un 30359 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
| 5 | 3, 4 | eqtri 2753 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3914 {cpr 4593 {ctp 4595 ∪ cuni 4873 1c1 11075 3c3 12243 8c8 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-sn 4592 df-pr 4594 df-tp 4596 df-uni 4874 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |