MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-uni Structured version   Visualization version   GIF version

Theorem ex-uni 28790
Description: Example for df-uni 4840. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-uni {{1, 3}, {1, 8}} = {1, 3, 8}

Proof of Theorem ex-uni
StepHypRef Expression
1 prex 5355 . . 3 {1, 3} ∈ V
2 prex 5355 . . 3 {1, 8} ∈ V
31, 2unipr 4857 . 2 {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8})
4 ex-un 28788 . 2 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
53, 4eqtri 2766 1 {{1, 3}, {1, 8}} = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  {cpr 4563  {ctp 4565   cuni 4839  1c1 10872  3c3 12029  8c8 12034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-tp 4566  df-uni 4840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator