MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-uni Structured version   Visualization version   GIF version

Theorem ex-uni 28509
Description: Example for df-uni 4820. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-uni {{1, 3}, {1, 8}} = {1, 3, 8}

Proof of Theorem ex-uni
StepHypRef Expression
1 prex 5325 . . 3 {1, 3} ∈ V
2 prex 5325 . . 3 {1, 8} ∈ V
31, 2unipr 4837 . 2 {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8})
4 ex-un 28507 . 2 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
53, 4eqtri 2765 1 {{1, 3}, {1, 8}} = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cun 3864  {cpr 4543  {ctp 4545   cuni 4819  1c1 10730  3c3 11886  8c8 11891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-sn 4542  df-pr 4544  df-tp 4546  df-uni 4820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator