Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version |
Description: Example for df-uni 4837. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5350 | . . 3 ⊢ {1, 3} ∈ V | |
2 | prex 5350 | . . 3 ⊢ {1, 8} ∈ V | |
3 | 1, 2 | unipr 4854 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
4 | ex-un 28689 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
5 | 3, 4 | eqtri 2766 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 {cpr 4560 {ctp 4562 ∪ cuni 4836 1c1 10803 3c3 11959 8c8 11964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 df-uni 4837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |