| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-uni | Structured version Visualization version GIF version | ||
| Description: Example for df-uni 4860. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ex-uni | ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5375 | . . 3 ⊢ {1, 3} ∈ V | |
| 2 | prex 5375 | . . 3 ⊢ {1, 8} ∈ V | |
| 3 | 1, 2 | unipr 4876 | . 2 ⊢ ∪ {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8}) |
| 4 | ex-un 30399 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} | |
| 5 | 3, 4 | eqtri 2754 | 1 ⊢ ∪ {{1, 3}, {1, 8}} = {1, 3, 8} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 {cpr 4578 {ctp 4580 ∪ cuni 4859 1c1 11004 3c3 12178 8c8 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-tp 4581 df-uni 4860 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |