MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-uni Structured version   Visualization version   GIF version

Theorem ex-uni 30458
Description: Example for df-uni 4932. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-uni {{1, 3}, {1, 8}} = {1, 3, 8}

Proof of Theorem ex-uni
StepHypRef Expression
1 prex 5452 . . 3 {1, 3} ∈ V
2 prex 5452 . . 3 {1, 8} ∈ V
31, 2unipr 4948 . 2 {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8})
4 ex-un 30456 . 2 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
53, 4eqtri 2768 1 {{1, 3}, {1, 8}} = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  {cpr 4650  {ctp 4652   cuni 4931  1c1 11185  3c3 12349  8c8 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-tp 4653  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator