| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
| Ref | Expression |
|---|---|
| eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 3457 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 4 | 3 | exlimiv 1931 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 5 | eleq1 2819 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 7 | 6 | exbidv 1922 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 8 | df-uni 4860 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
| 9 | 7, 8 | elab2g 3636 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 10 | 1, 4, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-uni 4860 |
| This theorem is referenced by: eluni2 4863 elunii 4864 uniss 4867 eluniab 4873 uniun 4882 uniin 4883 unissb 4891 dfiun2g 4980 dftr2 5200 unipw 5391 dmuni 5854 iotanul2 6454 fununi 6556 elunirn 7185 uniex2 7671 uniuni 7695 mpoxopxnop0 8145 fprresex 8240 tfrlem7 8302 tfrlem9a 8305 inf2 9513 inf3lem2 9519 rankwflemb 9683 cardprclem 9869 carduni 9871 iunfictbso 10002 kmlem3 10041 kmlem4 10042 cfub 10137 isf34lem4 10265 grothtsk 10723 suplem1pr 10940 toprntopon 22838 isbasis2g 22861 tgval2 22869 ntreq0 22990 cmpsublem 23312 cmpsub 23313 cmpcld 23315 is1stc2 23355 alexsubALTlem3 23962 alexsubALT 23964 elold 27812 fnessref 36390 bj-restuni 37130 difunieq 37407 ismnushort 44333 truniALT 44573 truniALTVD 44909 unisnALT 44957 uniclaxun 45018 elunif 45052 ssfiunibd 45349 stoweidlem27 46064 stoweidlem48 46085 setrec1lem3 49720 setrec1 49722 |
| Copyright terms: Public domain | W3C validator |