| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
| Ref | Expression |
|---|---|
| eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 3468 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 5 | eleq1 2816 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 7 | 6 | exbidv 1921 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 8 | df-uni 4872 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
| 9 | 7, 8 | elab2g 3647 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 10 | 1, 4, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-uni 4872 |
| This theorem is referenced by: eluni2 4875 elunii 4876 uniss 4879 eluniab 4885 uniun 4894 uniin 4895 unissb 4903 unissbOLD 4904 dfiun2g 4994 dftr2 5216 unipw 5410 dmuni 5878 iotanul2 6481 fununi 6591 elunirn 7225 uniex2 7714 uniuni 7738 mpoxopxnop0 8194 fprresex 8289 tfrlem7 8351 tfrlem9a 8354 inf2 9576 inf3lem2 9582 rankwflemb 9746 cardprclem 9932 carduni 9934 iunfictbso 10067 kmlem3 10106 kmlem4 10107 cfub 10202 isf34lem4 10330 grothtsk 10788 suplem1pr 11005 toprntopon 22812 isbasis2g 22835 tgval2 22843 ntreq0 22964 cmpsublem 23286 cmpsub 23287 cmpcld 23289 is1stc2 23329 alexsubALTlem3 23936 alexsubALT 23938 elold 27781 fnessref 36345 bj-restuni 37085 difunieq 37362 ismnushort 44290 truniALT 44531 truniALTVD 44867 unisnALT 44915 uniclaxun 44976 elunif 45010 ssfiunibd 45307 stoweidlem27 46025 stoweidlem48 46046 setrec1lem3 49678 setrec1 49680 |
| Copyright terms: Public domain | W3C validator |