MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4864
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3459 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 480 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1930 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2816 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1921 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4862 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3638 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 378 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438   cuni 4861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-uni 4862
This theorem is referenced by:  eluni2  4865  elunii  4866  uniss  4869  eluniab  4875  uniun  4884  uniin  4885  unissb  4893  dfiun2g  4983  dftr2  5204  unipw  5397  dmuni  5861  iotanul2  6459  fununi  6561  elunirn  7191  uniex2  7678  uniuni  7702  mpoxopxnop0  8155  fprresex  8250  tfrlem7  8312  tfrlem9a  8315  inf2  9538  inf3lem2  9544  rankwflemb  9708  cardprclem  9894  carduni  9896  iunfictbso  10027  kmlem3  10066  kmlem4  10067  cfub  10162  isf34lem4  10290  grothtsk  10748  suplem1pr  10965  toprntopon  22828  isbasis2g  22851  tgval2  22859  ntreq0  22980  cmpsublem  23302  cmpsub  23303  cmpcld  23305  is1stc2  23345  alexsubALTlem3  23952  alexsubALT  23954  elold  27801  fnessref  36330  bj-restuni  37070  difunieq  37347  ismnushort  44274  truniALT  44515  truniALTVD  44851  unisnALT  44899  uniclaxun  44960  elunif  44994  ssfiunibd  45291  stoweidlem27  46009  stoweidlem48  46030  setrec1lem3  49675  setrec1  49677
  Copyright terms: Public domain W3C validator