MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4839
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3440 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 480 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1934 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2826 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 629 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1925 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4837 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3604 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 379 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-uni 4837
This theorem is referenced by:  eluni2  4840  elunii  4841  uniss  4844  eluniab  4851  uniun  4861  uniin  4862  unissb  4870  dftr2  5189  unipw  5360  dmuni  5812  fununi  6493  elunirn  7106  uniex2  7569  uniuni  7590  mpoxopxnop0  8002  fprresex  8097  wfrfunOLD  8121  wfrlem17OLD  8127  tfrlem7  8185  tfrlem9a  8188  inf2  9311  inf3lem2  9317  rankwflemb  9482  cardprclem  9668  carduni  9670  iunfictbso  9801  kmlem3  9839  kmlem4  9840  cfub  9936  isf34lem4  10064  grothtsk  10522  suplem1pr  10739  toprntopon  21982  isbasis2g  22006  tgval2  22014  ntreq0  22136  cmpsublem  22458  cmpsub  22459  cmpcld  22461  is1stc2  22501  alexsubALTlem3  23108  alexsubALT  23110  elold  33980  fnessref  34473  bj-restuni  35195  difunieq  35472  sn-iotanul  40121  ismnushort  41808  truniALT  42050  truniALTVD  42387  unisnALT  42435  elunif  42448  ssfiunibd  42738  stoweidlem27  43458  stoweidlem48  43479  setrec1lem3  46281  setrec1  46283
  Copyright terms: Public domain W3C validator