MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4886
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3480 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 480 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1930 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2822 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1921 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4884 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3659 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 378 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459   cuni 4883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-uni 4884
This theorem is referenced by:  eluni2  4887  elunii  4888  uniss  4891  eluniab  4897  uniun  4906  uniin  4907  unissb  4915  unissbOLD  4916  dfiun2g  5006  dftr2  5231  unipw  5425  dmuni  5894  iotanul2  6500  fununi  6610  elunirn  7242  uniex2  7730  uniuni  7754  mpoxopxnop0  8212  fprresex  8307  wfrfunOLD  8331  wfrlem17OLD  8337  tfrlem7  8395  tfrlem9a  8398  inf2  9635  inf3lem2  9641  rankwflemb  9805  cardprclem  9991  carduni  9993  iunfictbso  10126  kmlem3  10165  kmlem4  10166  cfub  10261  isf34lem4  10389  grothtsk  10847  suplem1pr  11064  toprntopon  22861  isbasis2g  22884  tgval2  22892  ntreq0  23013  cmpsublem  23335  cmpsub  23336  cmpcld  23338  is1stc2  23378  alexsubALTlem3  23985  alexsubALT  23987  elold  27825  fnessref  36321  bj-restuni  37061  difunieq  37338  ismnushort  44273  truniALT  44514  truniALTVD  44850  unisnALT  44898  uniclaxun  44959  elunif  44988  ssfiunibd  45286  stoweidlem27  46004  stoweidlem48  46025  setrec1lem3  49501  setrec1  49503
  Copyright terms: Public domain W3C validator