| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
| Ref | Expression |
|---|---|
| eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 3459 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 5 | eleq1 2816 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 7 | 6 | exbidv 1921 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 8 | df-uni 4862 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
| 9 | 7, 8 | elab2g 3638 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 10 | 1, 4, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-uni 4862 |
| This theorem is referenced by: eluni2 4865 elunii 4866 uniss 4869 eluniab 4875 uniun 4884 uniin 4885 unissb 4893 dfiun2g 4983 dftr2 5204 unipw 5397 dmuni 5861 iotanul2 6459 fununi 6561 elunirn 7191 uniex2 7678 uniuni 7702 mpoxopxnop0 8155 fprresex 8250 tfrlem7 8312 tfrlem9a 8315 inf2 9538 inf3lem2 9544 rankwflemb 9708 cardprclem 9894 carduni 9896 iunfictbso 10027 kmlem3 10066 kmlem4 10067 cfub 10162 isf34lem4 10290 grothtsk 10748 suplem1pr 10965 toprntopon 22828 isbasis2g 22851 tgval2 22859 ntreq0 22980 cmpsublem 23302 cmpsub 23303 cmpcld 23305 is1stc2 23345 alexsubALTlem3 23952 alexsubALT 23954 elold 27801 fnessref 36330 bj-restuni 37070 difunieq 37347 ismnushort 44274 truniALT 44515 truniALTVD 44851 unisnALT 44899 uniclaxun 44960 elunif 44994 ssfiunibd 45291 stoweidlem27 46009 stoweidlem48 46030 setrec1lem3 49675 setrec1 49677 |
| Copyright terms: Public domain | W3C validator |