MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4748
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3455 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3455 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 481 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1908 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2870 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 629 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1899 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4746 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3607 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 380 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1522  wex 1761  wcel 2081  Vcvv 3437   cuni 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-v 3439  df-uni 4746
This theorem is referenced by:  eluni2  4749  elunii  4750  eluniab  4756  uniun  4764  uniin  4765  uniss  4766  unissb  4776  dftr2  5065  unipw  5234  dmuni  5669  fununi  6299  elunirn  6875  uniex2  7322  uniuni  7341  mpoxopxnop0  7732  wfrfun  7817  wfrlem17  7823  tfrlem7  7871  tfrlem9a  7874  inf2  8932  inf3lem2  8938  rankwflemb  9068  cardprclem  9254  carduni  9256  iunfictbso  9386  kmlem3  9424  kmlem4  9425  cfub  9517  isf34lem4  9645  grothtsk  10103  suplem1pr  10320  toprntopon  21217  isbasis2g  21240  tgval2  21248  ntreq0  21369  cmpsublem  21691  cmpsub  21692  cmpcld  21694  is1stc2  21734  alexsubALTlem3  22341  alexsubALT  22343  fnessref  33314  bj-restuni  33987  difunieq  34186  truniALT  40414  truniALTVD  40751  unisnALT  40799  elunif  40812  ssfiunibd  41117  stoweidlem27  41854  stoweidlem48  41875  setrec1lem3  44272  setrec1  44274
  Copyright terms: Public domain W3C validator