| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
| Ref | Expression |
|---|---|
| eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 3480 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 5 | eleq1 2822 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 7 | 6 | exbidv 1921 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 8 | df-uni 4884 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
| 9 | 7, 8 | elab2g 3659 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 10 | 1, 4, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-uni 4884 |
| This theorem is referenced by: eluni2 4887 elunii 4888 uniss 4891 eluniab 4897 uniun 4906 uniin 4907 unissb 4915 unissbOLD 4916 dfiun2g 5006 dftr2 5231 unipw 5425 dmuni 5894 iotanul2 6500 fununi 6610 elunirn 7242 uniex2 7730 uniuni 7754 mpoxopxnop0 8212 fprresex 8307 wfrfunOLD 8331 wfrlem17OLD 8337 tfrlem7 8395 tfrlem9a 8398 inf2 9635 inf3lem2 9641 rankwflemb 9805 cardprclem 9991 carduni 9993 iunfictbso 10126 kmlem3 10165 kmlem4 10166 cfub 10261 isf34lem4 10389 grothtsk 10847 suplem1pr 11064 toprntopon 22861 isbasis2g 22884 tgval2 22892 ntreq0 23013 cmpsublem 23335 cmpsub 23336 cmpcld 23338 is1stc2 23378 alexsubALTlem3 23985 alexsubALT 23987 elold 27825 fnessref 36321 bj-restuni 37061 difunieq 37338 ismnushort 44273 truniALT 44514 truniALTVD 44850 unisnALT 44898 uniclaxun 44959 elunif 44988 ssfiunibd 45286 stoweidlem27 46004 stoweidlem48 46025 setrec1lem3 49501 setrec1 49503 |
| Copyright terms: Public domain | W3C validator |