Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluni | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
Ref | Expression |
---|---|
eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3451 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
2 | elex 3451 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
4 | 3 | exlimiv 1934 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
5 | eleq1 2827 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
6 | 5 | anbi1d 630 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
7 | 6 | exbidv 1925 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
8 | df-uni 4841 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
9 | 7, 8 | elab2g 3612 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
10 | 1, 4, 9 | pm5.21nii 380 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2107 Vcvv 3433 ∪ cuni 4840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-uni 4841 |
This theorem is referenced by: eluni2 4844 elunii 4845 uniss 4848 eluniab 4855 uniun 4865 uniin 4866 unissb 4874 dfiun2g 4961 dftr2 5194 unipw 5367 dmuni 5826 fununi 6516 elunirn 7133 uniex2 7600 uniuni 7621 mpoxopxnop0 8040 fprresex 8135 wfrfunOLD 8159 wfrlem17OLD 8165 tfrlem7 8223 tfrlem9a 8226 inf2 9390 inf3lem2 9396 rankwflemb 9560 cardprclem 9746 carduni 9748 iunfictbso 9879 kmlem3 9917 kmlem4 9918 cfub 10014 isf34lem4 10142 grothtsk 10600 suplem1pr 10817 toprntopon 22083 isbasis2g 22107 tgval2 22115 ntreq0 22237 cmpsublem 22559 cmpsub 22560 cmpcld 22562 is1stc2 22602 alexsubALTlem3 23209 alexsubALT 23211 elold 34062 fnessref 34555 bj-restuni 35277 difunieq 35554 sn-iotanul 40201 ismnushort 41926 truniALT 42168 truniALTVD 42505 unisnALT 42553 elunif 42566 ssfiunibd 42855 stoweidlem27 43575 stoweidlem48 43596 setrec1lem3 46406 setrec1 46408 |
Copyright terms: Public domain | W3C validator |