MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4934
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3509 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 480 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1929 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2832 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 630 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1920 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4932 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3696 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 378 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-uni 4932
This theorem is referenced by:  eluni2  4935  elunii  4936  uniss  4939  eluniab  4945  uniun  4954  uniin  4955  unissb  4963  unissbOLD  4964  dfiun2g  5053  dftr2  5285  unipw  5470  dmuni  5939  iotanul2  6543  fununi  6653  elunirn  7288  uniex2  7773  uniuni  7797  mpoxopxnop0  8256  fprresex  8351  wfrfunOLD  8375  wfrlem17OLD  8381  tfrlem7  8439  tfrlem9a  8442  inf2  9692  inf3lem2  9698  rankwflemb  9862  cardprclem  10048  carduni  10050  iunfictbso  10183  kmlem3  10222  kmlem4  10223  cfub  10318  isf34lem4  10446  grothtsk  10904  suplem1pr  11121  toprntopon  22952  isbasis2g  22976  tgval2  22984  ntreq0  23106  cmpsublem  23428  cmpsub  23429  cmpcld  23431  is1stc2  23471  alexsubALTlem3  24078  alexsubALT  24080  elold  27926  fnessref  36323  bj-restuni  37063  difunieq  37340  ismnushort  44270  truniALT  44512  truniALTVD  44849  unisnALT  44897  elunif  44916  ssfiunibd  45224  stoweidlem27  45948  stoweidlem48  45969  setrec1lem3  48781  setrec1  48783
  Copyright terms: Public domain W3C validator