MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4877
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3471 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 480 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1930 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2817 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1921 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4875 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3650 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 378 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-uni 4875
This theorem is referenced by:  eluni2  4878  elunii  4879  uniss  4882  eluniab  4888  uniun  4897  uniin  4898  unissb  4906  unissbOLD  4907  dfiun2g  4997  dftr2  5219  unipw  5413  dmuni  5881  iotanul2  6484  fununi  6594  elunirn  7228  uniex2  7717  uniuni  7741  mpoxopxnop0  8197  fprresex  8292  tfrlem7  8354  tfrlem9a  8357  inf2  9583  inf3lem2  9589  rankwflemb  9753  cardprclem  9939  carduni  9941  iunfictbso  10074  kmlem3  10113  kmlem4  10114  cfub  10209  isf34lem4  10337  grothtsk  10795  suplem1pr  11012  toprntopon  22819  isbasis2g  22842  tgval2  22850  ntreq0  22971  cmpsublem  23293  cmpsub  23294  cmpcld  23296  is1stc2  23336  alexsubALTlem3  23943  alexsubALT  23945  elold  27788  fnessref  36352  bj-restuni  37092  difunieq  37369  ismnushort  44297  truniALT  44538  truniALTVD  44874  unisnALT  44922  uniclaxun  44983  elunif  45017  ssfiunibd  45314  stoweidlem27  46032  stoweidlem48  46053  setrec1lem3  49682  setrec1  49684
  Copyright terms: Public domain W3C validator