MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluni Structured version   Visualization version   GIF version

Theorem eluni 4861
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 3458 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 480 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1931 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2821 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1922 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 4859 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 3632 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 378 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437   cuni 4858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-uni 4859
This theorem is referenced by:  eluni2  4862  elunii  4863  uniss  4866  eluniab  4872  uniun  4881  uniin  4882  uni0  4886  unissb  4891  dfiun2g  4980  dftr2  5202  unipw  5393  dmuni  5858  iotanul2  6459  fununi  6561  elunirn  7191  uniex2  7677  uniuni  7701  mpoxopxnop0  8151  fprresex  8246  tfrlem7  8308  tfrlem9a  8311  inf2  9520  inf3lem2  9526  rankwflemb  9693  cardprclem  9879  carduni  9881  iunfictbso  10012  kmlem3  10051  kmlem4  10052  cfub  10147  isf34lem4  10275  grothtsk  10733  suplem1pr  10950  toprntopon  22841  isbasis2g  22864  tgval2  22872  ntreq0  22993  cmpsublem  23315  cmpsub  23316  cmpcld  23318  is1stc2  23358  alexsubALTlem3  23965  alexsubALT  23967  elold  27815  fnessref  36422  bj-restuni  37162  difunieq  37439  ismnushort  44418  truniALT  44658  truniALTVD  44994  unisnALT  45042  uniclaxun  45103  elunif  45137  ssfiunibd  45434  stoweidlem27  46149  stoweidlem48  46170  setrec1lem3  49814  setrec1  49816
  Copyright terms: Public domain W3C validator