Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluni | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
Ref | Expression |
---|---|
eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3426 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
2 | elex 3426 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
4 | 3 | exlimiv 1938 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
5 | eleq1 2825 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
6 | 5 | anbi1d 633 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
7 | 6 | exbidv 1929 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
8 | df-uni 4820 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
9 | 7, 8 | elab2g 3589 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
10 | 1, 4, 9 | pm5.21nii 383 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 Vcvv 3408 ∪ cuni 4819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-uni 4820 |
This theorem is referenced by: eluni2 4823 elunii 4824 uniss 4827 eluniab 4834 uniun 4844 uniin 4845 unissb 4853 dftr2 5163 unipw 5335 dmuni 5783 fununi 6455 elunirn 7064 uniex2 7526 uniuni 7547 mpoxopxnop0 7957 wfrfun 8065 wfrlem17 8071 tfrlem7 8119 tfrlem9a 8122 inf2 9238 inf3lem2 9244 rankwflemb 9409 cardprclem 9595 carduni 9597 iunfictbso 9728 kmlem3 9766 kmlem4 9767 cfub 9863 isf34lem4 9991 grothtsk 10449 suplem1pr 10666 toprntopon 21822 isbasis2g 21845 tgval2 21853 ntreq0 21974 cmpsublem 22296 cmpsub 22297 cmpcld 22299 is1stc2 22339 alexsubALTlem3 22946 alexsubALT 22948 elold 33790 fnessref 34283 bj-restuni 35003 difunieq 35282 ismnushort 41592 truniALT 41834 truniALTVD 42171 unisnALT 42219 elunif 42232 ssfiunibd 42521 stoweidlem27 43243 stoweidlem48 43264 setrec1lem3 46066 setrec1 46068 |
Copyright terms: Public domain | W3C validator |