Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-up Structured version   Visualization version   GIF version

Definition df-up 49299
Description: Definition of the class of universal properties.

Given categories 𝐷 and 𝐸, if 𝐹:𝐷𝐸 is a functor and 𝑊 an object of 𝐸, a universal pair from 𝑊 to 𝐹 is a pair 𝑋, 𝑀 consisting of an object 𝑋 of 𝐷 and a morphism 𝑀:𝑊𝐹𝑋 of 𝐸, such that to every pair 𝑦, 𝑔 with 𝑦 an object of 𝐷 and 𝑔:𝑊𝐹𝑦 a morphism of 𝐸, there is a unique morphism 𝑘:𝑋𝑦 of 𝐷 with 𝐹𝑘 𝑀 = 𝑔. Such property is commonly referred to as a universal property. In our definition, it is denoted as 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀.

Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism 𝑀 instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981. Alternatively, the universal pair is called the "universal morphism" in Wikipedia (https://en.wikipedia.org/wiki/Universal_property) as well as published works, e.g., https://arxiv.org/pdf/2412.12179. But the pair 𝑋, 𝑀 should be named differently as the morphism 𝑀, and thus we call 𝑋 the universal object, 𝑀 the universal morphism, and 𝑋, 𝑀 the universal pair.

Given its existence, such universal pair is essentially unique (upeu3 49320), and can be generated from an existing universal pair by isomorphisms (upeu4 49321). See also oppcup 49332 for the dual concept.

(Contributed by Zhi Wang, 24-Sep-2025.)

Assertion
Ref Expression
df-up UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
Distinct variable group:   𝑏,𝑐,𝑑,𝑒,𝑓,𝑔,,𝑗,𝑘,𝑚,𝑜,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-up
StepHypRef Expression
1 cup 49298 . 2 class UP
2 vd . . 3 setvar 𝑑
3 ve . . 3 setvar 𝑒
4 cvv 3437 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1540 . . . . 5 class 𝑑
7 cbs 17122 . . . . 5 class Base
86, 7cfv 6486 . . . 4 class (Base‘𝑑)
9 vc . . . . 5 setvar 𝑐
103cv 1540 . . . . . 6 class 𝑒
1110, 7cfv 6486 . . . . 5 class (Base‘𝑒)
12 vh . . . . . 6 setvar
13 chom 17174 . . . . . . 7 class Hom
146, 13cfv 6486 . . . . . 6 class (Hom ‘𝑑)
15 vj . . . . . . 7 setvar 𝑗
1610, 13cfv 6486 . . . . . . 7 class (Hom ‘𝑒)
17 vo . . . . . . . 8 setvar 𝑜
18 cco 17175 . . . . . . . . 9 class comp
1910, 18cfv 6486 . . . . . . . 8 class (comp‘𝑒)
20 vf . . . . . . . . 9 setvar 𝑓
21 vw . . . . . . . . 9 setvar 𝑤
22 cfunc 17763 . . . . . . . . . 10 class Func
236, 10, 22co 7352 . . . . . . . . 9 class (𝑑 Func 𝑒)
249cv 1540 . . . . . . . . 9 class 𝑐
25 vx . . . . . . . . . . . . 13 setvar 𝑥
2625, 5wel 2114 . . . . . . . . . . . 12 wff 𝑥𝑏
27 vm . . . . . . . . . . . . . 14 setvar 𝑚
2827cv 1540 . . . . . . . . . . . . 13 class 𝑚
2921cv 1540 . . . . . . . . . . . . . 14 class 𝑤
3025cv 1540 . . . . . . . . . . . . . . 15 class 𝑥
3120cv 1540 . . . . . . . . . . . . . . . 16 class 𝑓
32 c1st 7925 . . . . . . . . . . . . . . . 16 class 1st
3331, 32cfv 6486 . . . . . . . . . . . . . . 15 class (1st𝑓)
3430, 33cfv 6486 . . . . . . . . . . . . . 14 class ((1st𝑓)‘𝑥)
3515cv 1540 . . . . . . . . . . . . . 14 class 𝑗
3629, 34, 35co 7352 . . . . . . . . . . . . 13 class (𝑤𝑗((1st𝑓)‘𝑥))
3728, 36wcel 2113 . . . . . . . . . . . 12 wff 𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))
3826, 37wa 395 . . . . . . . . . . 11 wff (𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)))
39 vg . . . . . . . . . . . . . . . 16 setvar 𝑔
4039cv 1540 . . . . . . . . . . . . . . 15 class 𝑔
41 vk . . . . . . . . . . . . . . . . . 18 setvar 𝑘
4241cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑘
43 vy . . . . . . . . . . . . . . . . . . 19 setvar 𝑦
4443cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑦
45 c2nd 7926 . . . . . . . . . . . . . . . . . . 19 class 2nd
4631, 45cfv 6486 . . . . . . . . . . . . . . . . . 18 class (2nd𝑓)
4730, 44, 46co 7352 . . . . . . . . . . . . . . . . 17 class (𝑥(2nd𝑓)𝑦)
4842, 47cfv 6486 . . . . . . . . . . . . . . . 16 class ((𝑥(2nd𝑓)𝑦)‘𝑘)
4929, 34cop 4581 . . . . . . . . . . . . . . . . 17 class 𝑤, ((1st𝑓)‘𝑥)⟩
5044, 33cfv 6486 . . . . . . . . . . . . . . . . 17 class ((1st𝑓)‘𝑦)
5117cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑜
5249, 50, 51co 7352 . . . . . . . . . . . . . . . 16 class (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))
5348, 28, 52co 7352 . . . . . . . . . . . . . . 15 class (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5440, 53wceq 1541 . . . . . . . . . . . . . 14 wff 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5512cv 1540 . . . . . . . . . . . . . . 15 class
5630, 44, 55co 7352 . . . . . . . . . . . . . 14 class (𝑥𝑦)
5754, 41, 56wreu 3345 . . . . . . . . . . . . 13 wff ∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5829, 50, 35co 7352 . . . . . . . . . . . . 13 class (𝑤𝑗((1st𝑓)‘𝑦))
5957, 39, 58wral 3048 . . . . . . . . . . . 12 wff 𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
605cv 1540 . . . . . . . . . . . 12 class 𝑏
6159, 43, 60wral 3048 . . . . . . . . . . 11 wff 𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
6238, 61wa 395 . . . . . . . . . 10 wff ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))
6362, 25, 27copab 5155 . . . . . . . . 9 class {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}
6420, 21, 23, 24, 63cmpo 7354 . . . . . . . 8 class (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6517, 19, 64csb 3846 . . . . . . 7 class (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6615, 16, 65csb 3846 . . . . . 6 class (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6712, 14, 66csb 3846 . . . . 5 class (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
689, 11, 67csb 3846 . . . 4 class (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
695, 8, 68csb 3846 . . 3 class (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
702, 3, 4, 4, 69cmpo 7354 . 2 class (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
711, 70wceq 1541 1 wff UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmup  49300  upfval  49301
  Copyright terms: Public domain W3C validator