Detailed syntax breakdown of Definition df-up
| Step | Hyp | Ref
| Expression |
| 1 | | cup 48885 |
. 2
class
UP |
| 2 | | vd |
. . 3
setvar 𝑑 |
| 3 | | ve |
. . 3
setvar 𝑒 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vb |
. . . 4
setvar 𝑏 |
| 6 | 2 | cv 1538 |
. . . . 5
class 𝑑 |
| 7 | | cbs 17230 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 6542 |
. . . 4
class
(Base‘𝑑) |
| 9 | | vc |
. . . . 5
setvar 𝑐 |
| 10 | 3 | cv 1538 |
. . . . . 6
class 𝑒 |
| 11 | 10, 7 | cfv 6542 |
. . . . 5
class
(Base‘𝑒) |
| 12 | | vh |
. . . . . 6
setvar ℎ |
| 13 | | chom 17285 |
. . . . . . 7
class
Hom |
| 14 | 6, 13 | cfv 6542 |
. . . . . 6
class (Hom
‘𝑑) |
| 15 | | vj |
. . . . . . 7
setvar 𝑗 |
| 16 | 10, 13 | cfv 6542 |
. . . . . . 7
class (Hom
‘𝑒) |
| 17 | | vo |
. . . . . . . 8
setvar 𝑜 |
| 18 | | cco 17286 |
. . . . . . . . 9
class
comp |
| 19 | 10, 18 | cfv 6542 |
. . . . . . . 8
class
(comp‘𝑒) |
| 20 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 21 | | vw |
. . . . . . . . 9
setvar 𝑤 |
| 22 | | cfunc 17871 |
. . . . . . . . . 10
class
Func |
| 23 | 6, 10, 22 | co 7414 |
. . . . . . . . 9
class (𝑑 Func 𝑒) |
| 24 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑐 |
| 25 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 26 | 25, 5 | wel 2108 |
. . . . . . . . . . . 12
wff 𝑥 ∈ 𝑏 |
| 27 | | vm |
. . . . . . . . . . . . . 14
setvar 𝑚 |
| 28 | 27 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑚 |
| 29 | 21 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑤 |
| 30 | 25 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑥 |
| 31 | 20 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑓 |
| 32 | | c1st 7995 |
. . . . . . . . . . . . . . . 16
class
1st |
| 33 | 31, 32 | cfv 6542 |
. . . . . . . . . . . . . . 15
class
(1st ‘𝑓) |
| 34 | 30, 33 | cfv 6542 |
. . . . . . . . . . . . . 14
class
((1st ‘𝑓)‘𝑥) |
| 35 | 15 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑗 |
| 36 | 29, 34, 35 | co 7414 |
. . . . . . . . . . . . 13
class (𝑤𝑗((1st ‘𝑓)‘𝑥)) |
| 37 | 28, 36 | wcel 2107 |
. . . . . . . . . . . 12
wff 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥)) |
| 38 | 26, 37 | wa 395 |
. . . . . . . . . . 11
wff (𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) |
| 39 | | vg |
. . . . . . . . . . . . . . . 16
setvar 𝑔 |
| 40 | 39 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑔 |
| 41 | | vk |
. . . . . . . . . . . . . . . . . 18
setvar 𝑘 |
| 42 | 41 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑘 |
| 43 | | vy |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑦 |
| 44 | 43 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑦 |
| 45 | | c2nd 7996 |
. . . . . . . . . . . . . . . . . . 19
class
2nd |
| 46 | 31, 45 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class
(2nd ‘𝑓) |
| 47 | 30, 44, 46 | co 7414 |
. . . . . . . . . . . . . . . . 17
class (𝑥(2nd ‘𝑓)𝑦) |
| 48 | 42, 47 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class ((𝑥(2nd ‘𝑓)𝑦)‘𝑘) |
| 49 | 29, 34 | cop 4614 |
. . . . . . . . . . . . . . . . 17
class
〈𝑤,
((1st ‘𝑓)‘𝑥)〉 |
| 50 | 44, 33 | cfv 6542 |
. . . . . . . . . . . . . . . . 17
class
((1st ‘𝑓)‘𝑦) |
| 51 | 17 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑜 |
| 52 | 49, 50, 51 | co 7414 |
. . . . . . . . . . . . . . . 16
class
(〈𝑤,
((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦)) |
| 53 | 48, 28, 52 | co 7414 |
. . . . . . . . . . . . . . 15
class (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
| 54 | 40, 53 | wceq 1539 |
. . . . . . . . . . . . . 14
wff 𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
| 55 | 12 | cv 1538 |
. . . . . . . . . . . . . . 15
class ℎ |
| 56 | 30, 44, 55 | co 7414 |
. . . . . . . . . . . . . 14
class (𝑥ℎ𝑦) |
| 57 | 54, 41, 56 | wreu 3362 |
. . . . . . . . . . . . 13
wff
∃!𝑘 ∈
(𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
| 58 | 29, 50, 35 | co 7414 |
. . . . . . . . . . . . 13
class (𝑤𝑗((1st ‘𝑓)‘𝑦)) |
| 59 | 57, 39, 58 | wral 3050 |
. . . . . . . . . . . 12
wff
∀𝑔 ∈
(𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
| 60 | 5 | cv 1538 |
. . . . . . . . . . . 12
class 𝑏 |
| 61 | 59, 43, 60 | wral 3050 |
. . . . . . . . . . 11
wff
∀𝑦 ∈
𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
| 62 | 38, 61 | wa 395 |
. . . . . . . . . 10
wff ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚)) |
| 63 | 62, 25, 27 | copab 5187 |
. . . . . . . . 9
class
{〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))} |
| 64 | 20, 21, 23, 24, 63 | cmpo 7416 |
. . . . . . . 8
class (𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
| 65 | 17, 19, 64 | csb 3881 |
. . . . . . 7
class
⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
| 66 | 15, 16, 65 | csb 3881 |
. . . . . 6
class
⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
| 67 | 12, 14, 66 | csb 3881 |
. . . . 5
class
⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom
‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
| 68 | 9, 11, 67 | csb 3881 |
. . . 4
class
⦋(Base‘𝑒) / 𝑐⦌⦋(Hom
‘𝑑) / ℎ⦌⦋(Hom
‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
| 69 | 5, 8, 68 | csb 3881 |
. . 3
class
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
| 70 | 2, 3, 4, 4, 69 | cmpo 7416 |
. 2
class (𝑑 ∈ V, 𝑒 ∈ V ↦
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) |
| 71 | 1, 70 | wceq 1539 |
1
wff UP = (𝑑 ∈ V, 𝑒 ∈ V ↦
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) |