Detailed syntax breakdown of Definition df-up
Step | Hyp | Ref
| Expression |
1 | | cup 48851 |
. 2
class
UP |
2 | | vd |
. . 3
setvar 𝑑 |
3 | | ve |
. . 3
setvar 𝑒 |
4 | | cvv 3481 |
. . 3
class
V |
5 | | vb |
. . . 4
setvar 𝑏 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑑 |
7 | | cbs 17254 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6569 |
. . . 4
class
(Base‘𝑑) |
9 | | vc |
. . . . 5
setvar 𝑐 |
10 | 3 | cv 1538 |
. . . . . 6
class 𝑒 |
11 | 10, 7 | cfv 6569 |
. . . . 5
class
(Base‘𝑒) |
12 | | vh |
. . . . . 6
setvar ℎ |
13 | | chom 17318 |
. . . . . . 7
class
Hom |
14 | 6, 13 | cfv 6569 |
. . . . . 6
class (Hom
‘𝑑) |
15 | | vj |
. . . . . . 7
setvar 𝑗 |
16 | 10, 13 | cfv 6569 |
. . . . . . 7
class (Hom
‘𝑒) |
17 | | vo |
. . . . . . . 8
setvar 𝑜 |
18 | | cco 17319 |
. . . . . . . . 9
class
comp |
19 | 10, 18 | cfv 6569 |
. . . . . . . 8
class
(comp‘𝑒) |
20 | | vf |
. . . . . . . . 9
setvar 𝑓 |
21 | | vw |
. . . . . . . . 9
setvar 𝑤 |
22 | | cfunc 17914 |
. . . . . . . . . 10
class
Func |
23 | 6, 10, 22 | co 7438 |
. . . . . . . . 9
class (𝑑 Func 𝑒) |
24 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑐 |
25 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
26 | 25, 5 | wel 2109 |
. . . . . . . . . . . 12
wff 𝑥 ∈ 𝑏 |
27 | | vm |
. . . . . . . . . . . . . 14
setvar 𝑚 |
28 | 27 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑚 |
29 | 21 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑤 |
30 | 25 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑥 |
31 | 20 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑓 |
32 | | c1st 8020 |
. . . . . . . . . . . . . . . 16
class
1st |
33 | 31, 32 | cfv 6569 |
. . . . . . . . . . . . . . 15
class
(1st ‘𝑓) |
34 | 30, 33 | cfv 6569 |
. . . . . . . . . . . . . 14
class
((1st ‘𝑓)‘𝑥) |
35 | 15 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑗 |
36 | 29, 34, 35 | co 7438 |
. . . . . . . . . . . . 13
class (𝑤𝑗((1st ‘𝑓)‘𝑥)) |
37 | 28, 36 | wcel 2108 |
. . . . . . . . . . . 12
wff 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥)) |
38 | 26, 37 | wa 395 |
. . . . . . . . . . 11
wff (𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) |
39 | | vg |
. . . . . . . . . . . . . . . 16
setvar 𝑔 |
40 | 39 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑔 |
41 | | vk |
. . . . . . . . . . . . . . . . . 18
setvar 𝑘 |
42 | 41 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑘 |
43 | | vy |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑦 |
44 | 43 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑦 |
45 | | c2nd 8021 |
. . . . . . . . . . . . . . . . . . 19
class
2nd |
46 | 31, 45 | cfv 6569 |
. . . . . . . . . . . . . . . . . 18
class
(2nd ‘𝑓) |
47 | 30, 44, 46 | co 7438 |
. . . . . . . . . . . . . . . . 17
class (𝑥(2nd ‘𝑓)𝑦) |
48 | 42, 47 | cfv 6569 |
. . . . . . . . . . . . . . . 16
class ((𝑥(2nd ‘𝑓)𝑦)‘𝑘) |
49 | 29, 34 | cop 4640 |
. . . . . . . . . . . . . . . . 17
class
〈𝑤,
((1st ‘𝑓)‘𝑥)〉 |
50 | 44, 33 | cfv 6569 |
. . . . . . . . . . . . . . . . 17
class
((1st ‘𝑓)‘𝑦) |
51 | 17 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑜 |
52 | 49, 50, 51 | co 7438 |
. . . . . . . . . . . . . . . 16
class
(〈𝑤,
((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦)) |
53 | 48, 28, 52 | co 7438 |
. . . . . . . . . . . . . . 15
class (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
54 | 40, 53 | wceq 1539 |
. . . . . . . . . . . . . 14
wff 𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
55 | 12 | cv 1538 |
. . . . . . . . . . . . . . 15
class ℎ |
56 | 30, 44, 55 | co 7438 |
. . . . . . . . . . . . . 14
class (𝑥ℎ𝑦) |
57 | 54, 41, 56 | wreu 3378 |
. . . . . . . . . . . . 13
wff
∃!𝑘 ∈
(𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
58 | 29, 50, 35 | co 7438 |
. . . . . . . . . . . . 13
class (𝑤𝑗((1st ‘𝑓)‘𝑦)) |
59 | 57, 39, 58 | wral 3061 |
. . . . . . . . . . . 12
wff
∀𝑔 ∈
(𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
60 | 5 | cv 1538 |
. . . . . . . . . . . 12
class 𝑏 |
61 | 59, 43, 60 | wral 3061 |
. . . . . . . . . . 11
wff
∀𝑦 ∈
𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) |
62 | 38, 61 | wa 395 |
. . . . . . . . . 10
wff ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚)) |
63 | 62, 25, 27 | copab 5213 |
. . . . . . . . 9
class
{〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))} |
64 | 20, 21, 23, 24, 63 | cmpo 7440 |
. . . . . . . 8
class (𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
65 | 17, 19, 64 | csb 3911 |
. . . . . . 7
class
⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
66 | 15, 16, 65 | csb 3911 |
. . . . . 6
class
⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
67 | 12, 14, 66 | csb 3911 |
. . . . 5
class
⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom
‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
68 | 9, 11, 67 | csb 3911 |
. . . 4
class
⦋(Base‘𝑒) / 𝑐⦌⦋(Hom
‘𝑑) / ℎ⦌⦋(Hom
‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
69 | 5, 8, 68 | csb 3911 |
. . 3
class
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) |
70 | 2, 3, 4, 4, 69 | cmpo 7440 |
. 2
class (𝑑 ∈ V, 𝑒 ∈ V ↦
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) |
71 | 1, 70 | wceq 1539 |
1
wff UP = (𝑑 ∈ V, 𝑒 ∈ V ↦
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) |