Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-up Structured version   Visualization version   GIF version

Definition df-up 48886
Description: Definition of the class of universal properties.

Given categories 𝐷 and 𝐸, if 𝐹:𝐷𝐸 is a functor and 𝑊 an object of 𝐸, a universal pair from 𝑊 to 𝐹 is a pair 𝑋, 𝑀 consisting of an object 𝑋 of 𝐷 and a morphism 𝑀:𝑊𝐹𝑋 of 𝐸, such that to every pair 𝑦, 𝑔 with 𝑦 an object of 𝐷 and 𝑔:𝑊𝐹𝑦 a morphism of 𝐸, there is a unique morphism 𝑘:𝑋𝑦 of 𝐷 with 𝐹𝑘 𝑀 = 𝑔. Such property is commonly referred to as a universal property. In our definition, it is denoted as 𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀.

Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism 𝑀 instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981. Alternatively, the universal pair is called the "universal morphism" in Wikipedia (https://en.wikipedia.org/wiki/Universal_property) as well as published works, e.g., https://arxiv.org/pdf/2412.12179. But the pair 𝑋, 𝑀 should be named differently as the morphism 𝑀, and thus we call 𝑋 the universal object, 𝑀 the universal morphism, and 𝑋, 𝑀 the universal pair.

Given its existence, such universal pair is essentially unique (upeu3 48901), and can be generated from an existing universal pair by isomorphisms (upeu4 48902). See also oppcup 48903 for the dual concept.

(Contributed by Zhi Wang, 24-Sep-2025.)

Assertion
Ref Expression
df-up UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
Distinct variable group:   𝑏,𝑐,𝑑,𝑒,𝑓,𝑔,,𝑗,𝑘,𝑚,𝑜,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-up
StepHypRef Expression
1 cup 48885 . 2 class UP
2 vd . . 3 setvar 𝑑
3 ve . . 3 setvar 𝑒
4 cvv 3464 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1538 . . . . 5 class 𝑑
7 cbs 17230 . . . . 5 class Base
86, 7cfv 6542 . . . 4 class (Base‘𝑑)
9 vc . . . . 5 setvar 𝑐
103cv 1538 . . . . . 6 class 𝑒
1110, 7cfv 6542 . . . . 5 class (Base‘𝑒)
12 vh . . . . . 6 setvar
13 chom 17285 . . . . . . 7 class Hom
146, 13cfv 6542 . . . . . 6 class (Hom ‘𝑑)
15 vj . . . . . . 7 setvar 𝑗
1610, 13cfv 6542 . . . . . . 7 class (Hom ‘𝑒)
17 vo . . . . . . . 8 setvar 𝑜
18 cco 17286 . . . . . . . . 9 class comp
1910, 18cfv 6542 . . . . . . . 8 class (comp‘𝑒)
20 vf . . . . . . . . 9 setvar 𝑓
21 vw . . . . . . . . 9 setvar 𝑤
22 cfunc 17871 . . . . . . . . . 10 class Func
236, 10, 22co 7414 . . . . . . . . 9 class (𝑑 Func 𝑒)
249cv 1538 . . . . . . . . 9 class 𝑐
25 vx . . . . . . . . . . . . 13 setvar 𝑥
2625, 5wel 2108 . . . . . . . . . . . 12 wff 𝑥𝑏
27 vm . . . . . . . . . . . . . 14 setvar 𝑚
2827cv 1538 . . . . . . . . . . . . 13 class 𝑚
2921cv 1538 . . . . . . . . . . . . . 14 class 𝑤
3025cv 1538 . . . . . . . . . . . . . . 15 class 𝑥
3120cv 1538 . . . . . . . . . . . . . . . 16 class 𝑓
32 c1st 7995 . . . . . . . . . . . . . . . 16 class 1st
3331, 32cfv 6542 . . . . . . . . . . . . . . 15 class (1st𝑓)
3430, 33cfv 6542 . . . . . . . . . . . . . 14 class ((1st𝑓)‘𝑥)
3515cv 1538 . . . . . . . . . . . . . 14 class 𝑗
3629, 34, 35co 7414 . . . . . . . . . . . . 13 class (𝑤𝑗((1st𝑓)‘𝑥))
3728, 36wcel 2107 . . . . . . . . . . . 12 wff 𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))
3826, 37wa 395 . . . . . . . . . . 11 wff (𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)))
39 vg . . . . . . . . . . . . . . . 16 setvar 𝑔
4039cv 1538 . . . . . . . . . . . . . . 15 class 𝑔
41 vk . . . . . . . . . . . . . . . . . 18 setvar 𝑘
4241cv 1538 . . . . . . . . . . . . . . . . 17 class 𝑘
43 vy . . . . . . . . . . . . . . . . . . 19 setvar 𝑦
4443cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑦
45 c2nd 7996 . . . . . . . . . . . . . . . . . . 19 class 2nd
4631, 45cfv 6542 . . . . . . . . . . . . . . . . . 18 class (2nd𝑓)
4730, 44, 46co 7414 . . . . . . . . . . . . . . . . 17 class (𝑥(2nd𝑓)𝑦)
4842, 47cfv 6542 . . . . . . . . . . . . . . . 16 class ((𝑥(2nd𝑓)𝑦)‘𝑘)
4929, 34cop 4614 . . . . . . . . . . . . . . . . 17 class 𝑤, ((1st𝑓)‘𝑥)⟩
5044, 33cfv 6542 . . . . . . . . . . . . . . . . 17 class ((1st𝑓)‘𝑦)
5117cv 1538 . . . . . . . . . . . . . . . . 17 class 𝑜
5249, 50, 51co 7414 . . . . . . . . . . . . . . . 16 class (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))
5348, 28, 52co 7414 . . . . . . . . . . . . . . 15 class (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5440, 53wceq 1539 . . . . . . . . . . . . . 14 wff 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5512cv 1538 . . . . . . . . . . . . . . 15 class
5630, 44, 55co 7414 . . . . . . . . . . . . . 14 class (𝑥𝑦)
5754, 41, 56wreu 3362 . . . . . . . . . . . . 13 wff ∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5829, 50, 35co 7414 . . . . . . . . . . . . 13 class (𝑤𝑗((1st𝑓)‘𝑦))
5957, 39, 58wral 3050 . . . . . . . . . . . 12 wff 𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
605cv 1538 . . . . . . . . . . . 12 class 𝑏
6159, 43, 60wral 3050 . . . . . . . . . . 11 wff 𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
6238, 61wa 395 . . . . . . . . . 10 wff ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))
6362, 25, 27copab 5187 . . . . . . . . 9 class {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}
6420, 21, 23, 24, 63cmpo 7416 . . . . . . . 8 class (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6517, 19, 64csb 3881 . . . . . . 7 class (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6615, 16, 65csb 3881 . . . . . 6 class (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6712, 14, 66csb 3881 . . . . 5 class (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
689, 11, 67csb 3881 . . . 4 class (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
695, 8, 68csb 3881 . . 3 class (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
702, 3, 4, 4, 69cmpo 7416 . 2 class (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
711, 70wceq 1539 1 wff UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmup  48887  upfval  48888
  Copyright terms: Public domain W3C validator