Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-up Structured version   Visualization version   GIF version

Definition df-up 49205
Description: Definition of the class of universal properties.

Given categories 𝐷 and 𝐸, if 𝐹:𝐷𝐸 is a functor and 𝑊 an object of 𝐸, a universal pair from 𝑊 to 𝐹 is a pair 𝑋, 𝑀 consisting of an object 𝑋 of 𝐷 and a morphism 𝑀:𝑊𝐹𝑋 of 𝐸, such that to every pair 𝑦, 𝑔 with 𝑦 an object of 𝐷 and 𝑔:𝑊𝐹𝑦 a morphism of 𝐸, there is a unique morphism 𝑘:𝑋𝑦 of 𝐷 with 𝐹𝑘 𝑀 = 𝑔. Such property is commonly referred to as a universal property. In our definition, it is denoted as 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀.

Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism 𝑀 instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981. Alternatively, the universal pair is called the "universal morphism" in Wikipedia (https://en.wikipedia.org/wiki/Universal_property) as well as published works, e.g., https://arxiv.org/pdf/2412.12179. But the pair 𝑋, 𝑀 should be named differently as the morphism 𝑀, and thus we call 𝑋 the universal object, 𝑀 the universal morphism, and 𝑋, 𝑀 the universal pair.

Given its existence, such universal pair is essentially unique (upeu3 49226), and can be generated from an existing universal pair by isomorphisms (upeu4 49227). See also oppcup 49238 for the dual concept.

(Contributed by Zhi Wang, 24-Sep-2025.)

Assertion
Ref Expression
df-up UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
Distinct variable group:   𝑏,𝑐,𝑑,𝑒,𝑓,𝑔,,𝑗,𝑘,𝑚,𝑜,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-up
StepHypRef Expression
1 cup 49204 . 2 class UP
2 vd . . 3 setvar 𝑑
3 ve . . 3 setvar 𝑒
4 cvv 3436 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1540 . . . . 5 class 𝑑
7 cbs 17117 . . . . 5 class Base
86, 7cfv 6481 . . . 4 class (Base‘𝑑)
9 vc . . . . 5 setvar 𝑐
103cv 1540 . . . . . 6 class 𝑒
1110, 7cfv 6481 . . . . 5 class (Base‘𝑒)
12 vh . . . . . 6 setvar
13 chom 17169 . . . . . . 7 class Hom
146, 13cfv 6481 . . . . . 6 class (Hom ‘𝑑)
15 vj . . . . . . 7 setvar 𝑗
1610, 13cfv 6481 . . . . . . 7 class (Hom ‘𝑒)
17 vo . . . . . . . 8 setvar 𝑜
18 cco 17170 . . . . . . . . 9 class comp
1910, 18cfv 6481 . . . . . . . 8 class (comp‘𝑒)
20 vf . . . . . . . . 9 setvar 𝑓
21 vw . . . . . . . . 9 setvar 𝑤
22 cfunc 17758 . . . . . . . . . 10 class Func
236, 10, 22co 7346 . . . . . . . . 9 class (𝑑 Func 𝑒)
249cv 1540 . . . . . . . . 9 class 𝑐
25 vx . . . . . . . . . . . . 13 setvar 𝑥
2625, 5wel 2112 . . . . . . . . . . . 12 wff 𝑥𝑏
27 vm . . . . . . . . . . . . . 14 setvar 𝑚
2827cv 1540 . . . . . . . . . . . . 13 class 𝑚
2921cv 1540 . . . . . . . . . . . . . 14 class 𝑤
3025cv 1540 . . . . . . . . . . . . . . 15 class 𝑥
3120cv 1540 . . . . . . . . . . . . . . . 16 class 𝑓
32 c1st 7919 . . . . . . . . . . . . . . . 16 class 1st
3331, 32cfv 6481 . . . . . . . . . . . . . . 15 class (1st𝑓)
3430, 33cfv 6481 . . . . . . . . . . . . . 14 class ((1st𝑓)‘𝑥)
3515cv 1540 . . . . . . . . . . . . . 14 class 𝑗
3629, 34, 35co 7346 . . . . . . . . . . . . 13 class (𝑤𝑗((1st𝑓)‘𝑥))
3728, 36wcel 2111 . . . . . . . . . . . 12 wff 𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))
3826, 37wa 395 . . . . . . . . . . 11 wff (𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)))
39 vg . . . . . . . . . . . . . . . 16 setvar 𝑔
4039cv 1540 . . . . . . . . . . . . . . 15 class 𝑔
41 vk . . . . . . . . . . . . . . . . . 18 setvar 𝑘
4241cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑘
43 vy . . . . . . . . . . . . . . . . . . 19 setvar 𝑦
4443cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑦
45 c2nd 7920 . . . . . . . . . . . . . . . . . . 19 class 2nd
4631, 45cfv 6481 . . . . . . . . . . . . . . . . . 18 class (2nd𝑓)
4730, 44, 46co 7346 . . . . . . . . . . . . . . . . 17 class (𝑥(2nd𝑓)𝑦)
4842, 47cfv 6481 . . . . . . . . . . . . . . . 16 class ((𝑥(2nd𝑓)𝑦)‘𝑘)
4929, 34cop 4582 . . . . . . . . . . . . . . . . 17 class 𝑤, ((1st𝑓)‘𝑥)⟩
5044, 33cfv 6481 . . . . . . . . . . . . . . . . 17 class ((1st𝑓)‘𝑦)
5117cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑜
5249, 50, 51co 7346 . . . . . . . . . . . . . . . 16 class (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))
5348, 28, 52co 7346 . . . . . . . . . . . . . . 15 class (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5440, 53wceq 1541 . . . . . . . . . . . . . 14 wff 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5512cv 1540 . . . . . . . . . . . . . . 15 class
5630, 44, 55co 7346 . . . . . . . . . . . . . 14 class (𝑥𝑦)
5754, 41, 56wreu 3344 . . . . . . . . . . . . 13 wff ∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
5829, 50, 35co 7346 . . . . . . . . . . . . 13 class (𝑤𝑗((1st𝑓)‘𝑦))
5957, 39, 58wral 3047 . . . . . . . . . . . 12 wff 𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
605cv 1540 . . . . . . . . . . . 12 class 𝑏
6159, 43, 60wral 3047 . . . . . . . . . . 11 wff 𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)
6238, 61wa 395 . . . . . . . . . 10 wff ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))
6362, 25, 27copab 5153 . . . . . . . . 9 class {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}
6420, 21, 23, 24, 63cmpo 7348 . . . . . . . 8 class (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6517, 19, 64csb 3850 . . . . . . 7 class (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6615, 16, 65csb 3850 . . . . . 6 class (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
6712, 14, 66csb 3850 . . . . 5 class (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
689, 11, 67csb 3850 . . . 4 class (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
695, 8, 68csb 3850 . . 3 class (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))})
702, 3, 4, 4, 69cmpo 7348 . 2 class (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
711, 70wceq 1541 1 wff UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmup  49206  upfval  49207
  Copyright terms: Public domain W3C validator