Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu4 Structured version   Visualization version   GIF version

Theorem upeu4 49103
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upeu3.i (𝜑𝐼 = (Iso‘𝐷))
upeu3.o (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
upeu3.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
upeu4.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu4.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
Assertion
Ref Expression
upeu4 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁)

Proof of Theorem upeu4
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2730 . . . 4 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2730 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2730 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 upeu3.x . . . . 5 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
76uprcl2 49096 . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
86, 1uprcl4 49098 . . . 4 (𝜑𝑋 ∈ (Base‘𝐷))
9 upeu4.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
107funcrcl2 48996 . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
11 isofn 17743 . . . . . . . . . 10 (𝐷 ∈ Cat → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
13 upeu3.i . . . . . . . . . 10 (𝜑𝐼 = (Iso‘𝐷))
1413fneq1d 6619 . . . . . . . . 9 (𝜑 → (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
1512, 14mpbird 257 . . . . . . . 8 (𝜑𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)))
16 fnov 7527 . . . . . . . 8 (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ 𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1715, 16sylib 218 . . . . . . 7 (𝜑𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1817oveqd 7411 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
199, 18eleqtrd 2831 . . . . 5 (𝜑𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
20 eqid 2730 . . . . . 6 (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))
2120elmpocl2 7639 . . . . 5 (𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌) → 𝑌 ∈ (Base‘𝐷))
2219, 21syl 17 . . . 4 (𝜑𝑌 ∈ (Base‘𝐷))
236, 2uprcl3 49097 . . . 4 (𝜑𝑊 ∈ (Base‘𝐸))
246, 4uprcl5 49099 . . . 4 (𝜑𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑋)))
251, 3, 4, 5, 6isup2 49101 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑥)𝑓 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
26 eqid 2730 . . . 4 (Iso‘𝐷) = (Iso‘𝐷)
2713oveqd 7411 . . . . 5 (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌))
289, 27eleqtrd 2831 . . . 4 (𝜑𝐾 ∈ (𝑋(Iso‘𝐷)𝑌))
29 upeu4.n . . . . 5 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
30 upeu3.o . . . . . 6 (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
3130oveqd 7411 . . . . 5 (𝜑 → (((𝑋𝐺𝑌)‘𝐾) 𝑀) = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
3229, 31eqtrd 2765 . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
331, 2, 3, 4, 5, 7, 8, 22, 23, 24, 25, 26, 28, 32upeu2 49080 . . 3 (𝜑 → (𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3433simprd 495 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁))
3533simpld 494 . . 3 (𝜑𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)))
361, 2, 3, 4, 5, 23, 7, 22, 35isup 49088 . 2 (𝜑 → (𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁 ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3734, 36mpbird 257 1 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3046  ∃!wreu 3355  cop 4603   class class class wbr 5115   × cxp 5644   Fn wfn 6514  cfv 6519  (class class class)co 7394  cmpo 7396  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Isociso 17714   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-sect 17715  df-inv 17716  df-iso 17717  df-func 17826  df-up 49082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator