Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu4 Structured version   Visualization version   GIF version

Theorem upeu4 48902
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upeu3.i (𝜑𝐼 = (Iso‘𝐷))
upeu3.o (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
upeu3.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀)
upeu4.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu4.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
Assertion
Ref Expression
upeu4 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑁)

Proof of Theorem upeu4
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2734 . . . 4 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2734 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2734 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2734 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 upeu3.x . . . . 5 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀)
76uprcl2 48896 . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
86, 1uprcl4 48898 . . . 4 (𝜑𝑋 ∈ (Base‘𝐷))
9 upeu4.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
107funcrcl2 48865 . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
11 isofn 17791 . . . . . . . . . 10 (𝐷 ∈ Cat → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
13 upeu3.i . . . . . . . . . 10 (𝜑𝐼 = (Iso‘𝐷))
1413fneq1d 6642 . . . . . . . . 9 (𝜑 → (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
1512, 14mpbird 257 . . . . . . . 8 (𝜑𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)))
16 fnov 7547 . . . . . . . 8 (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ 𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1715, 16sylib 218 . . . . . . 7 (𝜑𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1817oveqd 7431 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
199, 18eleqtrd 2835 . . . . 5 (𝜑𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
20 eqid 2734 . . . . . 6 (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))
2120elmpocl2 7659 . . . . 5 (𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌) → 𝑌 ∈ (Base‘𝐷))
2219, 21syl 17 . . . 4 (𝜑𝑌 ∈ (Base‘𝐷))
236, 2uprcl3 48897 . . . 4 (𝜑𝑊 ∈ (Base‘𝐸))
246, 4uprcl5 48899 . . . 4 (𝜑𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑋)))
251, 3, 4, 5, 6isup2 48900 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑥)𝑓 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
26 eqid 2734 . . . 4 (Iso‘𝐷) = (Iso‘𝐷)
2713oveqd 7431 . . . . 5 (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌))
289, 27eleqtrd 2835 . . . 4 (𝜑𝐾 ∈ (𝑋(Iso‘𝐷)𝑌))
29 upeu4.n . . . . 5 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
30 upeu3.o . . . . . 6 (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
3130oveqd 7431 . . . . 5 (𝜑 → (((𝑋𝐺𝑌)‘𝐾) 𝑀) = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
3229, 31eqtrd 2769 . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
331, 2, 3, 4, 5, 7, 8, 22, 23, 24, 25, 26, 28, 32upeu2 48884 . . 3 (𝜑 → (𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3433simprd 495 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁))
3533simpld 494 . . 3 (𝜑𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)))
361, 2, 3, 4, 5, 23, 7, 22, 35isup 48892 . 2 (𝜑 → (𝑌(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑁 ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3734, 36mpbird 257 1 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3362  cop 4614   class class class wbr 5125   × cxp 5665   Fn wfn 6537  cfv 6542  (class class class)co 7414  cmpo 7416  Basecbs 17230  Hom chom 17285  compcco 17286  Catccat 17679  Isociso 17762  UPcup 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-cat 17683  df-cid 17684  df-sect 17763  df-inv 17764  df-iso 17765  df-func 17875  df-up 48886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator