| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 2 | | eqid 2734 |
. . . 4
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 3 | | eqid 2734 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 4 | | eqid 2734 |
. . . 4
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 5 | | eqid 2734 |
. . . 4
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 6 | | upeu3.x |
. . . . 5
⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) |
| 7 | 6 | uprcl2 48896 |
. . . 4
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | 6, 1 | uprcl4 48898 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 9 | | upeu4.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) |
| 10 | 7 | funcrcl2 48865 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 11 | | isofn 17791 |
. . . . . . . . . 10
⊢ (𝐷 ∈ Cat →
(Iso‘𝐷) Fn
((Base‘𝐷) ×
(Base‘𝐷))) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))) |
| 13 | | upeu3.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) |
| 14 | 13 | fneq1d 6642 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))) |
| 15 | 12, 14 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 Fn ((Base‘𝐷) × (Base‘𝐷))) |
| 16 | | fnov 7547 |
. . . . . . . 8
⊢ (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ 𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))) |
| 17 | 15, 16 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))) |
| 18 | 17 | oveqd 7431 |
. . . . . 6
⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌)) |
| 19 | 9, 18 | eleqtrd 2835 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌)) |
| 20 | | eqid 2734 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)) |
| 21 | 20 | elmpocl2 7659 |
. . . . 5
⊢ (𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌) → 𝑌 ∈ (Base‘𝐷)) |
| 22 | 19, 21 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 23 | 6, 2 | uprcl3 48897 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 24 | 6, 4 | uprcl5 48899 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) |
| 25 | 1, 3, 4, 5, 6 | isup2 48900 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑥)𝑓 = (((𝑋𝐺𝑥)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑥))𝑀)) |
| 26 | | eqid 2734 |
. . . 4
⊢
(Iso‘𝐷) =
(Iso‘𝐷) |
| 27 | 13 | oveqd 7431 |
. . . . 5
⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌)) |
| 28 | 9, 27 | eleqtrd 2835 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝑋(Iso‘𝐷)𝑌)) |
| 29 | | upeu4.n |
. . . . 5
⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾) ⚬ 𝑀)) |
| 30 | | upeu3.o |
. . . . . 6
⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) |
| 31 | 30 | oveqd 7431 |
. . . . 5
⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝐾) ⚬ 𝑀) = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
| 32 | 29, 31 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
| 33 | 1, 2, 3, 4, 5, 7, 8, 22, 23, 24, 25, 26, 28, 32 | upeu2 48884 |
. . 3
⊢ (𝜑 → (𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑌)) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑦))𝑁))) |
| 34 | 33 | simprd 495 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑦))𝑁)) |
| 35 | 33 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑌))) |
| 36 | 1, 2, 3, 4, 5, 23,
7, 22, 35 | isup 48892 |
. 2
⊢ (𝜑 → (𝑌(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑁 ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑦))𝑁))) |
| 37 | 34, 36 | mpbird 257 |
1
⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑁) |