Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu4 Structured version   Visualization version   GIF version

Theorem upeu4 49227
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upeu3.i (𝜑𝐼 = (Iso‘𝐷))
upeu3.o (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
upeu3.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
upeu4.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu4.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
Assertion
Ref Expression
upeu4 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁)

Proof of Theorem upeu4
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2731 . . . 4 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2731 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2731 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2731 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 upeu3.x . . . . 5 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
76uprcl2 49220 . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
86, 1uprcl4 49222 . . . 4 (𝜑𝑋 ∈ (Base‘𝐷))
9 upeu4.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
107funcrcl2 49110 . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
11 isofn 17679 . . . . . . . . . 10 (𝐷 ∈ Cat → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
13 upeu3.i . . . . . . . . . 10 (𝜑𝐼 = (Iso‘𝐷))
1413fneq1d 6574 . . . . . . . . 9 (𝜑 → (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
1512, 14mpbird 257 . . . . . . . 8 (𝜑𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)))
16 fnov 7477 . . . . . . . 8 (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ 𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1715, 16sylib 218 . . . . . . 7 (𝜑𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1817oveqd 7363 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
199, 18eleqtrd 2833 . . . . 5 (𝜑𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
20 eqid 2731 . . . . . 6 (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))
2120elmpocl2 7589 . . . . 5 (𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌) → 𝑌 ∈ (Base‘𝐷))
2219, 21syl 17 . . . 4 (𝜑𝑌 ∈ (Base‘𝐷))
236, 2uprcl3 49221 . . . 4 (𝜑𝑊 ∈ (Base‘𝐸))
246, 4uprcl5 49223 . . . 4 (𝜑𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑋)))
251, 3, 4, 5, 6isup2 49225 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑥)𝑓 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
26 eqid 2731 . . . 4 (Iso‘𝐷) = (Iso‘𝐷)
2713oveqd 7363 . . . . 5 (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌))
289, 27eleqtrd 2833 . . . 4 (𝜑𝐾 ∈ (𝑋(Iso‘𝐷)𝑌))
29 upeu4.n . . . . 5 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
30 upeu3.o . . . . . 6 (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
3130oveqd 7363 . . . . 5 (𝜑 → (((𝑋𝐺𝑌)‘𝐾) 𝑀) = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
3229, 31eqtrd 2766 . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
331, 2, 3, 4, 5, 7, 8, 22, 23, 24, 25, 26, 28, 32upeu2 49203 . . 3 (𝜑 → (𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3433simprd 495 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁))
3533simpld 494 . . 3 (𝜑𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)))
361, 2, 3, 4, 5, 23, 7, 22, 35isup 49211 . 2 (𝜑 → (𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁 ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3734, 36mpbird 257 1 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  cop 4582   class class class wbr 5091   × cxp 5614   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Isociso 17650   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-sect 17651  df-inv 17652  df-iso 17653  df-func 17762  df-up 49205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator