Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu4 Structured version   Visualization version   GIF version

Theorem upeu4 49185
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upeu3.i (𝜑𝐼 = (Iso‘𝐷))
upeu3.o (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
upeu3.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
upeu4.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu4.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
Assertion
Ref Expression
upeu4 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁)

Proof of Theorem upeu4
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 upeu3.x . . . . 5 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
76uprcl2 49178 . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
86, 1uprcl4 49180 . . . 4 (𝜑𝑋 ∈ (Base‘𝐷))
9 upeu4.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
107funcrcl2 49068 . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
11 isofn 17737 . . . . . . . . . 10 (𝐷 ∈ Cat → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
13 upeu3.i . . . . . . . . . 10 (𝜑𝐼 = (Iso‘𝐷))
1413fneq1d 6611 . . . . . . . . 9 (𝜑 → (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
1512, 14mpbird 257 . . . . . . . 8 (𝜑𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)))
16 fnov 7520 . . . . . . . 8 (𝐼 Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ 𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1715, 16sylib 218 . . . . . . 7 (𝜑𝐼 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)))
1817oveqd 7404 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
199, 18eleqtrd 2830 . . . . 5 (𝜑𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌))
20 eqid 2729 . . . . . 6 (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))
2120elmpocl2 7632 . . . . 5 (𝐾 ∈ (𝑋(𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥𝐼𝑦))𝑌) → 𝑌 ∈ (Base‘𝐷))
2219, 21syl 17 . . . 4 (𝜑𝑌 ∈ (Base‘𝐷))
236, 2uprcl3 49179 . . . 4 (𝜑𝑊 ∈ (Base‘𝐸))
246, 4uprcl5 49181 . . . 4 (𝜑𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑋)))
251, 3, 4, 5, 6isup2 49183 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑥))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑥)𝑓 = (((𝑋𝐺𝑥)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑥))𝑀))
26 eqid 2729 . . . 4 (Iso‘𝐷) = (Iso‘𝐷)
2713oveqd 7404 . . . . 5 (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌))
289, 27eleqtrd 2830 . . . 4 (𝜑𝐾 ∈ (𝑋(Iso‘𝐷)𝑌))
29 upeu4.n . . . . 5 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾) 𝑀))
30 upeu3.o . . . . . 6 (𝜑 = (⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌)))
3130oveqd 7404 . . . . 5 (𝜑 → (((𝑋𝐺𝑌)‘𝐾) 𝑀) = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
3229, 31eqtrd 2764 . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑌))𝑀))
331, 2, 3, 4, 5, 7, 8, 22, 23, 24, 25, 26, 28, 32upeu2 49161 . . 3 (𝜑 → (𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3433simprd 495 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁))
3533simpld 494 . . 3 (𝜑𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑌)))
361, 2, 3, 4, 5, 23, 7, 22, 35isup 49169 . 2 (𝜑 → (𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁 ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑦))𝑁)))
3734, 36mpbird 257 1 (𝜑𝑌(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  cop 4595   class class class wbr 5107   × cxp 5636   Fn wfn 6506  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Isociso 17708   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-sect 17709  df-inv 17710  df-iso 17711  df-func 17820  df-up 49163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator