![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oppcup | Structured version Visualization version GIF version |
Description: The universal pair 〈𝑋, 𝑀〉 from a functor to an object is universal from an object to a functor in the opposite category. (Contributed by Zhi Wang, 24-Sep-2025.) |
Ref | Expression |
---|---|
oppcup.b | ⊢ 𝐵 = (Base‘𝐷) |
oppcup.c | ⊢ 𝐶 = (Base‘𝐸) |
oppcup.h | ⊢ 𝐻 = (Hom ‘𝐷) |
oppcup.j | ⊢ 𝐽 = (Hom ‘𝐸) |
oppcup.xb | ⊢ ∙ = (comp‘𝐸) |
oppcup.w | ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
oppcup.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
oppcup.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
oppcup.m | ⊢ (𝜑 → 𝑀 ∈ ((𝐹‘𝑋)𝐽𝑊)) |
oppcup.o | ⊢ 𝑂 = (oppCat‘𝐷) |
oppcup.p | ⊢ 𝑃 = (oppCat‘𝐸) |
Ref | Expression |
---|---|
oppcup | ⊢ (𝜑 → (𝑋(〈𝐹, tpos 𝐺〉(𝑂UP𝑃)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcup.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐷) | |
2 | oppcup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
3 | 1, 2 | oppcbas 17773 | . . 3 ⊢ 𝐵 = (Base‘𝑂) |
4 | oppcup.p | . . . 4 ⊢ 𝑃 = (oppCat‘𝐸) | |
5 | oppcup.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
6 | 4, 5 | oppcbas 17773 | . . 3 ⊢ 𝐶 = (Base‘𝑃) |
7 | eqid 2737 | . . 3 ⊢ (Hom ‘𝑂) = (Hom ‘𝑂) | |
8 | eqid 2737 | . . 3 ⊢ (Hom ‘𝑃) = (Hom ‘𝑃) | |
9 | eqid 2737 | . . 3 ⊢ (comp‘𝑃) = (comp‘𝑃) | |
10 | oppcup.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐶) | |
11 | oppcup.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
12 | 1, 4, 11 | funcoppc 17935 | . . 3 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
13 | oppcup.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | oppcup.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ((𝐹‘𝑋)𝐽𝑊)) | |
15 | oppcup.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐸) | |
16 | 15, 4 | oppchom 17770 | . . . 4 ⊢ (𝑊(Hom ‘𝑃)(𝐹‘𝑋)) = ((𝐹‘𝑋)𝐽𝑊) |
17 | 14, 16 | eleqtrrdi 2852 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊(Hom ‘𝑃)(𝐹‘𝑋))) |
18 | 3, 6, 7, 8, 9, 10, 12, 13, 17 | isup 48858 | . 2 ⊢ (𝜑 → (𝑋(〈𝐹, tpos 𝐺〉(𝑂UP𝑃)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊(Hom ‘𝑃)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝑂)𝑦)𝑔 = (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀))) |
19 | 15, 4 | oppchom 17770 | . . . . 5 ⊢ (𝑊(Hom ‘𝑃)(𝐹‘𝑦)) = ((𝐹‘𝑦)𝐽𝑊) |
20 | 19 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑊(Hom ‘𝑃)(𝐹‘𝑦)) = ((𝐹‘𝑦)𝐽𝑊)) |
21 | oppcup.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐷) | |
22 | 21, 1 | oppchom 17770 | . . . . . 6 ⊢ (𝑋(Hom ‘𝑂)𝑦) = (𝑦𝐻𝑋) |
23 | 22 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(Hom ‘𝑂)𝑦) = (𝑦𝐻𝑋)) |
24 | ovtpos 8274 | . . . . . . . . 9 ⊢ (𝑋tpos 𝐺𝑦) = (𝑦𝐺𝑋) | |
25 | 24 | fveq1i 6915 | . . . . . . . 8 ⊢ ((𝑋tpos 𝐺𝑦)‘𝑘) = ((𝑦𝐺𝑋)‘𝑘) |
26 | 25 | oveq1i 7448 | . . . . . . 7 ⊢ (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) = (((𝑦𝐺𝑋)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) |
27 | oppcup.xb | . . . . . . . 8 ⊢ ∙ = (comp‘𝐸) | |
28 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ 𝐶) |
29 | 11 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐹(𝐷 Func 𝐸)𝐺) |
30 | 2, 5, 29 | funcf1 17926 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐹:𝐵⟶𝐶) |
31 | 13 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
32 | 30, 31 | ffvelcdmd 7112 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐶) |
33 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
34 | 30, 33 | ffvelcdmd 7112 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ 𝐶) |
35 | 5, 27, 4, 28, 32, 34 | oppcco 17772 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (((𝑦𝐺𝑋)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘))) |
36 | 26, 35 | eqtrid 2789 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘))) |
37 | 36 | eqeq2d 2748 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑔 = (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) ↔ 𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) |
38 | 23, 37 | reueqbidv 3423 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃!𝑘 ∈ (𝑋(Hom ‘𝑂)𝑦)𝑔 = (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) |
39 | 20, 38 | raleqbidv 3346 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∀𝑔 ∈ (𝑊(Hom ‘𝑃)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝑂)𝑦)𝑔 = (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) ↔ ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) |
40 | 39 | ralbidva 3176 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊(Hom ‘𝑃)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝑂)𝑦)𝑔 = (((𝑋tpos 𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝑃)(𝐹‘𝑦))𝑀) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) |
41 | 18, 40 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋(〈𝐹, tpos 𝐺〉(𝑂UP𝑃)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃!wreu 3378 〈cop 4640 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 tpos ctpos 8258 Basecbs 17254 Hom chom 17318 compcco 17319 oppCatcoppc 17765 Func cfunc 17914 UPcup 48851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-hom 17331 df-cco 17332 df-cat 17722 df-cid 17723 df-oppc 17766 df-func 17918 df-up 48852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |